Physikalische Chemie. Peter W. Atkins
Чтение книги онлайн.

Читать онлайн книгу Physikalische Chemie - Peter W. Atkins страница 49

Название: Physikalische Chemie

Автор: Peter W. Atkins

Издательство: John Wiley & Sons Limited

Жанр: Химия

Серия:

isbn: 9783527828326

isbn:

СКАЧАТЬ 1.18 Die Variation des Kompressionsfaktors Z mit dem Druck für verschiedene Gase bei 0 °C. Für ein ideales Gas gilt bei beliebigem Druck Z = 1. Für p → 0 streben zwar alle Kurven dem Wert 1 zu, aber mit unterschiedlichen Steigungen.

      Illustration 1.5

      Das molare Volumen eines idealen Gases bei 500 K und 100 bar ist image = 0, 416 dm3 mol-1. Das mola-re Volumcn von Kohlcndioxid unter dcnsclbcn Bc-dingungenist image = 0, 366 dm3 mol-1. Für den Kompressionsfaktor bei 500K ergibt sich

image

      (b) Virialkoeffizienten

      Bei großen molaren Volumina und hohen Temperaturen unterscheiden sich die Isothermen realer und idealer Gase nur unwesentlich. Wir können daher die Zustandsgleichung des idealen Gases als erstes Glied in einer Reihenentwicklung der Form

      ansehen. Wir sehen hier ein Beispiel für eine allgemeine Methode in der Physikalischen Chemie, bei der man eine einfache Beziehung (hier pVm = RT), die eine gute erste Näherung für ein bestimmtes Verhalten gibt, als ersten Term in einer Reihenentwicklung in einer geeigneten Variable (hier p) ansetzt. Für viele Anwendungen bevorzugt man die Form

Temperatur
Substanz 273 K 600 K
Argon, Ar –21, 7 11, 9
Kohlendioxid, CO2 –149, 7 –12, 4
Stickstoff, N2 –10, 5 21, 7
Xenon, Xe –153, 7 –19, 6

      Illustration 1.6

      Wir verwenden Gl. (1.25b) (bis einschließlich zum B-Term), um den Druck zu berechnen, den 0, 104 mol O2 (g) in einem Gefäß mit dem Volumen 0, 225dm3 bei 100K ausüben. Zunächst berechnen wir hierzu das molare Volumen des Gases:

image

      Nun verwenden wir Gl. (1.25b) sowie den Wert für den zweiten Virialkoeffizienten B, den wir Tab. 1.4 aus dem Tabellenteil im Anhang dieses Buchs entnehmen, und erhalten

image

      mit 1 Pa = 1Jm−3. Hätten wir die Zustandsgleichung des idealen Gases (Gl. (1.4)) zur Berechnung des Drucks verwendet, hätten wir hingegen p = 385 k Pa erhalten; also einen Wert, der etwa 10% höher ist als bei Verwendung der Virialgleichung. Die Abweichung ist deshalb so groß, weil unter diesen Bedingungen B/Vm ≈ 0, 1 ist; ein Wert, der sich deutlich von 1 unterscheidet.

      (1.26b)СКАЧАТЬ