Physikalische Chemie. Peter W. Atkins
Чтение книги онлайн.

Читать онлайн книгу Physikalische Chemie - Peter W. Atkins страница 47

Название: Physikalische Chemie

Автор: Peter W. Atkins

Издательство: John Wiley & Sons Limited

Жанр: Химия

Серия:

isbn: 9783527828326

isbn:

СКАЧАТЬ 1.3 entnommen haben, erhalten wir für die Stoßzahl

image

      d. h. ein Molekül erfährt in jeder Sekunde etwa 7 × 109 Stöße. Dieses Ergebnis vermittelt uns einen ersten Eindruck von der Zeitskala der Prozesse in Gasen.

      (b) Die mittlere freie Weglänge

      Die mittlere freie Weglänge λ(lambda) ist diemittlere Strecke, die ein Molekül zwischen zwei Stößen zurücklegt.Wenn ein Molekül mit der Stoßzahl z mit anderen Molekülen kollidiert, dann verbringt es eine Zeit von 1/z zwischen den Stößen in freiem Flug und legt dabei eine Strecke von (1/z)c̄rel zurück. Diemittlere freie Weglänge ist daher

      Durch Einsetzen des Ausdrucks für z aus Gl. (1.20b) erhalten wir für ein ideales Gas

      Wir erkennen: Eine Verdopplung des Drucks führt zu einer Halbierung von λ

      Illustration 1.4

image

      oder 95 nm, d. h. etwa 103 Moleküldurchmesser.

      Wir fassen zusammen: Ein typisches Gas (z. B. N2 oder O2) bei 105 Pa (1 atm) und 25 °C ist eine Ansammlung von Molekülen, die sich mit einer mittleren Geschwindigkeit von etwa 500ms−1 fortbewegen. Jedes Molekül stößt ungefähr jede Nanosekunde einmal mit einem anderen zusammen und legt zwischen zwei Stößen eine Strecke von etwa 103 Moleküldurchmessern zurück.

      Der Druck im Sterninneren hängt (wie immer bei idealen Gasen) gemäß p = ρRT/M mit der Massendichte ρ = m/V zusammen. Wenn wir annehmen, dass das Sterninnere aus ionisierten Wasserstoffatomen besteht, ist die mittlere Molmasse gleich der halben Molmasse von Wasserstoff (0, 5gmol−1, der Mittelwert der Molmassen von H+ und e, wobei Letztere nahezu null ist). Auf halbem Weg zum Mittelpunkt der Sonne beträgt die Temperatur 3, 6MK und die Massendichte ist 1, 20 g cm−3 (etwas mehr als die Dichte von Wasser). Daraus ergibt sich ein Druck von 7, 2×1013 Pa oder rund 720 Millionen Atmosphären.

      Dieses Resultat können wir mit Gl. (1.10) für den Druck nach der kinetischen Gastheorie kombinieren. Die kinetische Gesamtenergie der Teilchen ist Ekin = ½Nmc2, folglich ist p = ⅔ Ekin/V. Der Druck des Plasmas hängt demnach gemäß p = ⅔ ρkin/V mit der kinetischen Energiedichte ρkin = Ekin/V zusammen, der kinetischen Energie der Moleküle in einem bestimmten Volumen dividiert durch dieses Volumen. Daraus berechnen wir eine Energiedichte auf halbem Wege zum Mittelpunkt der Sonne von rund 0, 11 GJ cm−3. Im Vergleich dazu beträgt die Dichte der kinetischen (Translations-)Energie in unserer Atmosphäre an einem warmen Sommertag (25 °C) nur 0, 15 J cm−3.

      Schlüsselkonzepte

      1 1. Die kinetische Gastheorie berücksichtigt ausschließlich die kinetische Energie der Gasmoleküle.

      2 2. Wichtige Ergebnisse dieses Modells sind die abgeleiteten Beziehungen für den Druck und die quadratisch gemittelte Geschwindigkeit.

      3 3. Die Maxwell’sche Geschwindigkeitsverteilung (auch Maxwell-Boltzmann-Verteilung) gibt für jede beliebige Temperatur den Anteil der Moleküle eines Gases an, die Geschwindigkeiten innerhalb eines bestimmten Bereiches besitzen.

      4 4. Die Stoßzahl (auch Stoßhäufigkeit) ist definiert als die Anzahl der Kollisionen eines Moleküls innerhalb eines Zeitintervalls geteilt durch die Dauer dieses Intervalls.

      5 5. Die mittlere freie Weglänge ist die durchschnittliche Wegstrecke, die ein Molekül zwischen zwei Stößen zurücklegt.

      Die wichtigsten Gleichungen auf einen Blick

image

      Motivation

      Reale Gase weichen in ihrem Verhalten von der Modellvorstellung des idealen Gases ab, und es ist wichtig, diese real existierenden Eigenschaften beschreiben zu können. Diese Abweichungen vom idealen Verhalten erlauben es, einen tiefer greifenden Einblick in die Natur der Wechselwirkungen zwischen Molekülen СКАЧАТЬ