Название: Математические модели в естественнонаучном образовании. Том I
Автор: Денис Владимирович Соломатин
Издательство: Автор
Жанр: Медицина
isbn:
isbn:
Таблица 1.5. Популяционные значения из нелинейной модели
t 0 1 2 3 4 5 6 7 8 9 10
2.0117 3.2972 5.0653 7.0650 8.7238 9.6145 9.9110 9.9816 9.9963 9.9993 9.9999
Вопросы для самопроверки:
– Какой смысл могут иметь популяции, значения которых не являются целыми числами?
Если измерять размер популяции в единицах, таких как тысячи или миллионы особей, то нет никаких оснований для того, чтобы популяции были целыми числами. Для некоторых видов, таких как коммерчески ценные рыбы, может быть даже целесообразно использовать единицы массы или веса, такие как тонны.
Другая причина, по которой нецелочисленные значения популяции не вызывают опасения, даже если используем поштучные единицы измерения, заключается в том, что пытаемся лишь приблизительно описать размер популяции. Нет ожидания того, что модель даст точные прогнозы. Пока числа невелики, можно просто игнорировать дробные части без значительных потерь.
В таблице 1.5 видим, что популяционное значение увеличивается до пропускной способности 10, как и ожидалось. Сначала это увеличение кажется медленным, затем оно ускоряется, а затем снова замедляется. Построение значений популяции на рисунке 1.2 показывает сигмовидную картину, которая часто появляется в данных тщательно контролируемых лабораторных экспериментов, в которых популяции увеличиваются в ограниченной среде. График показывает значения популяции, связанные сегментами линий, чтобы сделать шаблон более ясным, хотя дискретные временные шаги нашей модели действительно дают популяции только в целочисленное время. Таким образом, с интуитивной точки зрения мы добились определенного прогресса; у нас есть более реалистичная модель для описания роста населения или численности выпускников физико-математических специальностей.
Рисунок 1.2. Популяционные значения из нелинейной модели.
Однако с математической точки зрения не всё так хорошо. В отличие от линейной модели, нет очевидной формулы для
, которая возникала бы из составленной таблицы. На самом деле, единственный способ получить значение , по-видимому, заключается в создании таблицы с сотней записей в ней. Утратилась легкость, с которой можно было бы предсказывать будущие значения популяции.Это то, с чем приходится мириться: хотя нелинейные модели более реалистичны, зачастую не представляется возможным получение явных формул для решения нелинейных дифференциальных уравнениях. Вместо этого используются графические методы и численные эксперименты для того, чтобы получить общее представление СКАЧАТЬ