Математические модели в естественнонаучном образовании. Том I. Денис Владимирович Соломатин
Чтение книги онлайн.

Читать онлайн книгу Математические модели в естественнонаучном образовании. Том I - Денис Владимирович Соломатин страница 7

СКАЧАТЬ target="_blank" rel="nofollow" href="#_73.jpg"/> и выведите формулу для вычисления
.

      1.1.13. Как хорошо известно лимнологам и океанографам, количество солнечного света, проникающего на различные глубины воды, может сильно повлиять на численность живущих там организмов. Предположим, что вода имеет равномерную мутность, а количество обитателей на каждом метре в глубину пропорционально количеству поступающего света.

      а. Объясните, почему это приводит к модели вида

, где
 обозначает количество света, проникшего на глубину
 метров.

      б. В каком диапазоне должны находиться параметры этой модели, чтобы иметь физический смысл?

      в. При

 для
.

      г. Применима ли аналогичная модель к фильтрации света через полог леса? Применимо ли там предположение о «равномерной мутности»?

      1.1.14. В таблице 1.3 приведены данные о численности обучающихся физмат школ.

      а. Изобразите данные на графике. Соответствуют ли эти данные геометрической модели роста? Объясните почему да или почему нет, используя графические и численные методы оценки. Можете ли придумать факторы, которые приведут к отклонению от геометрической модели?

      б. Используя данные только за 1980 и 1985 годы для оценки скорости роста геометрической модели, посмотрите, насколько хорошо результаты модели согласуются с данными последующих лет.

      в. Вместо того, чтобы просто использовать данные 1980 и 1985 годов для оценки показателя роста числа школьников, найдите способ использовать все данные, чтобы получить то, что (предположительно) должно быть лучшей геометрической моделью. Проявите творчество. Есть несколько разумных подходов. Соответствует ли ваша новая модель данным лучше, чем модель из части (б)?

      Таблица 1.3. Оценки числа школьников

      Год        Численность школьников (в 1 000 человек)

      1980                     213,260

      1985                     231,658

      1990                     245,976

      1995                     254,504

      2000                     263,368

      2005                     263,952

      2010                     302,690

      2015                     328,602

      2020                     359,980

      1.1.15. Предположим, что популяция моделируется уравнением

, где
 измеряется в единицах. Если решим измерить численность популяции в тысячах единиц, обозначив это число за
, то уравнение, моделирующее популяцию, могло измениться. Объясните, почему модель по-прежнему будет простой
. Подсказка: обратите внимание на то, что
.

      1.1.16. В данной задаче исследуем, как изменится модель, если изменить количество времени, представленное приращением переменной

 на единицу. Важно отметить, что эта ситуация не всегда имеет биологический смысл. Например, для организмов, таких как многие насекомые, поколения не перекрываются. Дрозофилы не воспитывают себе преемников. Но время их размножения имеет регулярное распределение, поэтому СКАЧАТЬ