Математические модели в естественнонаучном образовании. Том I. Денис Владимирович Соломатин
Чтение книги онлайн.

Читать онлайн книгу Математические модели в естественнонаучном образовании. Том I - Денис Владимирович Соломатин страница 5

СКАЧАТЬ вести себя иначе, чем численность учителей математики, но независимо от того, мало ли учителей или их много, всегда достаточно, чтобы появление учителей происходило непрестанно. Таким образом, именно численность учителей математики является важным параметром для отслеживания, чтобы понять долгосрочный рост или сокращение числа профессиональных математиков в стране.

      Вопросы для самопроверки:

      – Можете ли вы представить себе обстоятельства, при которых игнорирование уменьшения числа профессионалов той или оной области было бы хорошей идеей?

      Так что же такое разностное уравнение? Теперь, когда увидели разностное уравнение на примере, можно попытаться дать строгое определение: разностное уравнение – это формула, выражающая значения некоторой величины

 в терминах предыдущих значений
. Таким образом, если
 является какой-либо функцией, то
 называется разностным уравнением. В предыдущем примере использовалась
, но часто
 будет более сложным.

      Изучая разностные уравнения и их приложения, рассмотрим два основных вопроса: 1) Как найти подходящее разностное уравнение для моделирования ситуации? 2) Как понять поведение модели разностных уравнений после того, как её нашли?

      Обе эти задачи бывают довольно трудны. Тем не менее, обязательно научитесь моделировать с помощью разностных уравнений, глядя на математические модели, используемые разными авторами в классической литературе, а затем создадите собственные модели. Однако, честно говоря, это не обязательно исключит столкновение с принципиально неразрешимой проблемой. Что касается понимания поведения, которое моделируется разностным уравнением, то обычно не представляется возможным найти явную формулу, как было сделано выше для

, описывающего численность популяции в мальтузианской модели. Вместо этого разрабатываются методы извлечения менее точной, но качественной, а не количественной информации из модели.

      Конкретное разностное уравнение, обсуждаемое в этом разделе, иногда называют экспоненциальной или геометрической моделью, поскольку модель приводит к экспоненциальному росту и ассоциируется с именем Томаса Мальтуса. Математики, однако, склонны сосредотачиваться на форме уравнения

 и говорить, что модель линейна. Такая терминология может сбивать с толку, но она важна, когда линейная модель описывает экспоненциальный рост или убывание.

      Задачи для самостоятельного решения:

      1.1.1. Популяция изначально составляла 100 особей, но из-за комбинированного воздействия рождений и смертей она утраивается каждый час.

      а. Составьте таблицу численности популяции для

 пробегающего значения от 0 до 5, где
 измеряется в часах.

      б. Приведите два уравнения, моделирующих рост популяции, сначала путем выражения

, а затем выразив
 через СКАЧАТЬ