Nonlinear Filters. Simon Haykin
Чтение книги онлайн.

Читать онлайн книгу Nonlinear Filters - Simon Haykin страница 21

Название: Nonlinear Filters

Автор: Simon Haykin

Издательство: John Wiley & Sons Limited

Жанр: Программы

Серия:

isbn: 9781119078159

isbn:

СКАЧАТЬ right-parenthesis right-parenthesis"/>. In such cases, a difference between the actual and the nominal values of the state (a perturbation in the state) leads to a difference between the actual and the nominal values of the input (a perturbation in the input), and in effect therefore, delta bold u left-parenthesis t right-parenthesis not-equals 0. Otherwise, delta bold u left-parenthesis t right-parenthesis can be zero. Using the Taylor series expansion and neglecting the higher‐order terms, we obtain the following perturbation state‐space model:

      where bold f Subscript bold x and bold f Subscript bold u, respectively, denote the Jacobian matrices obtained by taking the derivatives of bold f with respect to bold x and bold u. Similarly, bold g Subscript bold x and bold g Subscript bold u are Jacobians of bold g with respect to bold x and bold u.

      (2.90)StartLayout 1st Row 1st Column delta bold x left-parenthesis t Subscript k plus 1 Baseline right-parenthesis 2nd Column equals ModifyingAbove bold upper Phi With bar left-parenthesis t Subscript k plus 1 Baseline comma t Subscript k Baseline right-parenthesis delta bold x left-parenthesis t Subscript k Baseline right-parenthesis plus ModifyingAbove bold upper Gamma With bar left-parenthesis t Subscript k plus 1 Baseline comma t Subscript k Baseline right-parenthesis delta bold u left-parenthesis t Subscript k Baseline right-parenthesis comma EndLayout

      (2.91)StartLayout 1st Row 1st Column delta bold y left-parenthesis t Subscript k Baseline right-parenthesis 2nd Column equals bold g Subscript bold x Baseline left-parenthesis ModifyingAbove bold x With bar left-parenthesis t Subscript k Baseline right-parenthesis comma ModifyingAbove bold u With bar left-parenthesis t Subscript k Baseline right-parenthesis right-parenthesis delta bold x left-parenthesis t Subscript k Baseline right-parenthesis plus bold g Subscript bold u Baseline left-parenthesis ModifyingAbove bold x With bar left-parenthesis t Subscript k Baseline right-parenthesis comma ModifyingAbove bold u With bar left-parenthesis t Subscript k Baseline right-parenthesis right-parenthesis delta bold u left-parenthesis t Subscript k Baseline right-parenthesis comma EndLayout

      where ModifyingAbove bold upper Phi With bar left-parenthesis t Subscript k plus 1 Baseline comma t Subscript k Baseline right-parenthesis is the solution to

      (2.92)StartFraction normal d ModifyingAbove bold upper Phi With bar left-parenthesis t comma t 0 right-parenthesis Over normal d t EndFraction equals bold f Subscript bold x Baseline left-parenthesis ModifyingAbove bold x With bar left-parenthesis t right-parenthesis comma ModifyingAbove bold u With bar left-parenthesis t right-parenthesis right-parenthesis ModifyingAbove bold upper Phi With bar left-parenthesis t comma t 0 right-parenthesis comma

      with the initial condition:

      (2.93)ModifyingAbove bold upper Phi With bold bar left-parenthesis t 0 comma t 0 right-parenthesis equals bold upper I comma

      when we set t 0 equals t Subscript k and t equals t Subscript k plus 1. As before, ModifyingAbove bold upper Gamma With bar left-parenthesis t Subscript k plus 1 Baseline comma t Subscript k Baseline right-parenthesis is given by:

      (2.94)ModifyingAbove bold upper Gamma With bar left-parenthesis t Subscript k plus 1 Baseline comma t Subscript k Baseline right-parenthesis equals integral Subscript t Subscript k Baseline Superscript t Subscript k plus 1 Baseline Baseline ModifyingAbove bold upper Phi With bar left-parenthesis t Subscript k plus 1 Baseline comma tau right-parenthesis bold f Subscript bold u Baseline left-parenthesis ModifyingAbove bold x With bar left-parenthesis tau right-parenthesis comma ModifyingAbove bold u With bar left-parenthesis tau right-parenthesis right-parenthesis normal d tau period

      So far, this chapter has been focused on studying the observability of deterministic systems. Section 2.7 discusses the observability of stochastic systems.

      Before proceeding with defining observability for stochastic systems, we need to recall a few concepts from information theory [26]:

      Definition 2.3 Entropy is a measure of our uncertainty about an event in Shannon's information theory. Specifically, СКАЧАТЬ