Nonlinear Filters. Simon Haykin
Чтение книги онлайн.

Читать онлайн книгу Nonlinear Filters - Simon Haykin страница 18

Название: Nonlinear Filters

Автор: Simon Haykin

Издательство: John Wiley & Sons Limited

Жанр: Программы

Серия:

isbn: 9781119078159

isbn:

СКАЧАТЬ 2nd Column equals vertical-ellipsis 7th Row 1st Column bold y Superscript left-parenthesis n minus 1 right-parenthesis 2nd Column equals StartFraction partial-differential Over partial-differential bold x EndFraction left-bracket upper L Subscript bold f Superscript n minus 2 Baseline bold g 1 midline-horizontal-ellipsis upper L Subscript bold f Superscript n minus 2 Baseline bold g Subscript i Baseline midline-horizontal-ellipsis upper L Subscript bold f Superscript n minus 2 Baseline bold g Subscript n Sub Subscript y Subscript Baseline right-bracket Superscript upper T Baseline ModifyingAbove bold x With dot 8th Row 1st Column Blank 2nd Column equals left-bracket upper L Subscript bold f Superscript n minus 1 Baseline bold g 1 midline-horizontal-ellipsis upper L Subscript bold f Superscript n minus 1 Baseline bold g Subscript i Baseline midline-horizontal-ellipsis upper L Subscript bold f Superscript n minus 1 Baseline bold g Subscript n Sub Subscript y Subscript Baseline right-bracket Superscript upper T Baseline period EndLayout"/>

      where

      (2.68)bold-script upper Y left-parenthesis t right-parenthesis equals Start 4 By 1 Matrix 1st Row bold y left-parenthesis t right-parenthesis 2nd Row ModifyingAbove bold y With dot left-parenthesis t right-parenthesis 3rd Row vertical-ellipsis 4th Row bold y Superscript left-parenthesis n minus 1 right-parenthesis Baseline left-parenthesis t right-parenthesis EndMatrix

      and

      (2.69)bold-script upper L left-parenthesis bold x left-parenthesis t right-parenthesis comma bold u left-parenthesis t right-parenthesis right-parenthesis equals Start 4 By 1 Matrix 1st Row Start 3 By 1 Matrix 1st Row upper L Subscript bold f Superscript 0 Baseline bold g 1 2nd Row vertical-ellipsis 3rd Row upper L Subscript bold f Superscript 0 Baseline bold g Subscript n Sub Subscript y Subscript Baseline EndMatrix 2nd Row Start 3 By 1 Matrix 1st Row upper L Subscript bold f Superscript 1 Baseline bold g 1 2nd Row vertical-ellipsis 3rd Row upper L Subscript bold f Superscript 1 Baseline bold g Subscript n Sub Subscript y Subscript Baseline EndMatrix 3rd Row vertical-ellipsis 4th Row Start 3 By 1 Matrix 1st Row upper L Subscript bold f Superscript n minus 1 Baseline bold g 1 2nd Row vertical-ellipsis 3rd Row upper L Subscript bold f Superscript n minus 1 Baseline bold g Subscript n Sub Subscript y Subscript Baseline EndMatrix EndMatrix period

      (2.70)bold-script upper Y left-parenthesis t right-parenthesis almost-equals bold-script upper L left-parenthesis bold x left-parenthesis t right-parenthesis comma bold u left-parenthesis t right-parenthesis right-parenthesis StartAbsoluteValue plus nabla bold-script upper L left-parenthesis bold x left-parenthesis t right-parenthesis comma bold u left-parenthesis t right-parenthesis right-parenthesis EndAbsoluteValue Subscript bold x left-parenthesis t 0 right-parenthesis Baseline Subscript bold x left-parenthesis t 0 right-parenthesis Baseline left-parenthesis bold x left-parenthesis t right-parenthesis minus bold x left-parenthesis t 0 right-parenthesis right-parenthesis period

      Using Cartan's formula:

      (2.71)nabla left-parenthesis upper L Subscript bold f Baseline bold g Subscript i Baseline right-parenthesis equals upper L Subscript bold f Baseline left-parenthesis nabla bold g Subscript i Baseline right-parenthesis comma

      we obtain:

      (2.72)nabla bold-script upper L left-parenthesis bold x left-parenthesis t right-parenthesis comma bold u left-parenthesis t right-parenthesis right-parenthesis equals Start 4 By 1 Matrix 1st Row Start 3 By 1 Matrix 1st Row upper L Subscript bold f Superscript 0 Baseline left-parenthesis nabla bold g 1 right-parenthesis 2nd Row vertical-ellipsis 3rd Row upper L Subscript bold f Superscript 0 Baseline left-parenthesis nabla bold g Subscript n Sub Subscript y Subscript Baseline right-parenthesis EndMatrix 2nd Row Start 3 By 1 Matrix 1st Row upper L Subscript bold f Superscript 1 Baseline left-parenthesis nabla bold g 1 right-parenthesis 2nd Row vertical-ellipsis 3rd Row upper L Subscript bold f Superscript 1 Baseline left-parenthesis nabla bold g Subscript n Sub Subscript y Subscript Baseline right-parenthesis EndMatrix 3rd Row vertical-ellipsis 4th Row Start 3 By 1 Matrix 1st Row upper L Subscript bold f Superscript n minus 1 Baseline left-parenthesis nabla bold g 1 right-parenthesis 2nd Row vertical-ellipsis 3rd Row upper L Subscript bold f Superscript n minus 1 Baseline left-parenthesis nabla bold g Subscript n Sub Subscript y Subscript Baseline right-parenthesis EndMatrix EndMatrix period

      1  for .

      2 The row vectors of are linearly independent.

      From the row vectors upper L Subscript f Superscript j minus 1 Baseline left-parenthesis nabla bold g Subscript i Baseline right-parenthesis, an observability matrix can be constructed for the continuous‐time nonlinear system in (2.61) and (2.62) as follows: