Nonlinear Filters. Simon Haykin
Чтение книги онлайн.

Читать онлайн книгу Nonlinear Filters - Simon Haykin страница 17

Название: Nonlinear Filters

Автор: Simon Haykin

Издательство: John Wiley & Sons Limited

Жанр: Программы

Серия:

isbn: 9781119078159

isbn:

СКАЧАТЬ alt="upper T"/> is finite. If the set of states in the neighborhood of a particular initial state bold x left-parenthesis t 0 right-parenthesis that are indistinguishable from it includes only bold x left-parenthesis t 0 right-parenthesis, then, the nonlinear system is said to be weakly observable at that initial state. A nonlinear system is called to be weakly observable if it is weakly observable at all bold x 0 element-of double-struck upper R Superscript n Super Subscript x. If the state and the output trajectories of a weakly observable nonlinear system remain close to the corresponding initial conditions, then the system that satisfies this additional constraint is called locally weakly observable [13, 20].

      2.6.1 Continuous‐Time Nonlinear Systems

      The state‐space model of a continuous‐time nonlinear system is represented by the following system of nonlinear equations:

      where bold f colon double-struck upper R Superscript n Super Subscript x Superscript Baseline times double-struck upper R Superscript n Super Subscript u Superscript Baseline right-arrow double-struck upper R Superscript n Super Subscript x Superscript is the system function, and bold g colon double-struck upper R Superscript n Super Subscript x Superscript Baseline times double-struck upper R Superscript n Super Subscript u Superscript Baseline right-arrow double-struck upper R Superscript n Super Subscript y Superscript is the measurement function. It is common practice to deploy a control law that uses state feedback. In such cases, the control input bold u is itself a function of the state vector bold x. Before proceeding, we need to recall the concept of Lie derivative from differential geometry [22, 23]. Assuming that bold f and bold g are smooth vector functions (they have derivatives of all orders or they can be differentiated infinitely many times), the Lie derivative of bold g Subscript i (the ith element of bold g) with respect to bold f is a scalar function defined as:

      (2.63)upper L Subscript bold f Baseline bold g Subscript i Baseline equals nabla bold g Subscript i Baseline bold f comma

      where nabla denotes the gradient with respect to bold x. For simplicity, arguments of the functions have not been shown. Repeated Lie derivatives are defined as:

      (2.64)upper L Subscript bold f Superscript j Baseline bold g Subscript i Baseline equals upper L Subscript bold f Baseline left-parenthesis upper L Subscript bold f Superscript j minus 1 Baseline bold g Subscript i Baseline right-parenthesis equals nabla left-parenthesis upper L Subscript bold f Superscript j minus 1 Baseline bold g Subscript i Baseline right-parenthesis bold f comma

      with

      (2.65)upper L Subscript bold f Superscript 0 Baseline bold g Subscript i Baseline equals bold g Subscript i Baseline period

      Relevance of Lie derivatives to observability of nonlinear systems becomes clear, when we consider successive derivatives of the output vector as follows:

      (2.66)StartLayout 1st Row 1st Column bold y 2nd Column equals bold g equals left-bracket upper L Subscript bold f Superscript 0 Baseline bold g 1 midline-horizontal-ellipsis upper L Subscript bold f Superscript 0 Baseline bold g Subscript i Baseline midline-horizontal-ellipsis upper L Subscript bold f Superscript 0 Baseline bold g Subscript n Sub Subscript y Subscript Baseline right-bracket Superscript upper T Baseline comma 2nd Row 1st Column ModifyingAbove bold y With dot 2nd Column equals StartFraction partial-differential bold g Over partial-differential bold x EndFraction ModifyingAbove bold x With dot equals left-bracket nabla bold g 1 bold f midline-horizontal-ellipsis nabla bold g Subscript i Baseline bold f midline-horizontal-ellipsis nabla bold g Subscript n Sub Subscript y Subscript Baseline bold f right-bracket Superscript upper T Baseline 3rd Row 1st Column Blank 2nd Column equals left-bracket upper L Subscript bold f Superscript 1 Baseline bold g 1 midline-horizontal-ellipsis upper L Subscript bold f Superscript 1 Baseline bold g Subscript i Baseline midline-horizontal-ellipsis upper L Subscript bold f Superscript 1 Baseline bold g Subscript n Sub Subscript y Subscript Baseline right-bracket Superscript upper T Baseline comma 4th Row 1st Column ModifyingAbove bold y With two-dots 2nd Column equals StartFraction partial-differential Over partial-differential bold x EndFraction left-bracket upper L Subscript bold f Baseline bold g 1 midline-horizontal-ellipsis upper L Subscript bold f Baseline bold g Subscript i Baseline midline-horizontal-ellipsis upper L Subscript bold f Baseline bold g Subscript n Sub Subscript y Subscript Baseline right-bracket Superscript upper T Baseline ModifyingAbove bold x With dot 5th Row 1st Column Blank 2nd Column equals left-bracket upper L Subscript bold f Superscript 2 Baseline bold g 1 midline-horizontal-ellipsis upper L Subscript bold f Superscript 2 Baseline bold g Subscript i Baseline midline-horizontal-ellipsis upper L Subscript bold f Superscript 2 Baseline bold g Subscript n Sub Subscript y Subscript Baseline right-bracket Superscript upper T Baseline comma 6th Row 1st Column vertical-ellipsis 
              <a href=СКАЧАТЬ