Nonlinear Filters. Simon Haykin
Чтение книги онлайн.

Читать онлайн книгу Nonlinear Filters - Simon Haykin страница 25

Название: Nonlinear Filters

Автор: Simon Haykin

Издательство: John Wiley & Sons Limited

Жанр: Программы

Серия:

isbn: 9781119078159

isbn:

СКАЧАТЬ

      A class of nonlinear observers is designed based on observer error linearization. State estimation by such observers involves multiplication of a matrix gain by the difference between predicted and measured outputs. After designing the observer (selecting the observer gain), this calculation can be performed fairly quickly, which is an advantage from the computational complexity perspective. However, the domain of applicability of such observers may be restricted to a specific class of nonlinear systems. A discrete‐time nonlinear Luenberger‐type observer has been proposed in [36]. A deterministic discrete‐time nonlinear system is described by the following state‐space model:

      (3.7)StartLayout 1st Row 1st Column bold y Subscript k 2nd Column equals bold g left-parenthesis bold x Subscript k Baseline comma bold u Subscript k Baseline right-parenthesis comma EndLayout

      where bold f and bold g are nonlinear vector functions. At time instant k, let bold u Subscript k minus n Sub Subscript x Subscript plus 1 colon k denote the sequence of the past n Subscript x inputs:

      (3.8)Start 6 By 1 Matrix 1st Row bold u Subscript k minus n Sub Subscript x Subscript plus 1 Baseline 2nd Row bold u Subscript k minus n Sub Subscript x Subscript plus 2 Baseline 3rd Row vertical-ellipsis 4th Row bold u Subscript k minus 2 Baseline 5th Row bold u Subscript k minus 1 Baseline 6th Row bold u Subscript k Baseline EndMatrix comma

      (3.9)Start 4 By 1 Matrix 1st Row vertical-ellipsis 2nd Row ModifyingAbove bold y With Ì‚ Subscript k vertical-bar k minus 3 Baseline 3rd Row ModifyingAbove bold y With Ì‚ Subscript k vertical-bar k minus 2 Baseline 4th Row ModifyingAbove bold y With Ì‚ Subscript k vertical-bar k minus 1 Baseline EndMatrix equals Start 4 By 1 Matrix 1st Row vertical-ellipsis 2nd Row bold g left-parenthesis bold f left-parenthesis bold f left-parenthesis bold x Subscript k minus 2 Baseline comma bold u Subscript k minus 2 Baseline right-parenthesis comma bold u Subscript k minus 1 Baseline right-parenthesis comma bold u Subscript k Baseline right-parenthesis 3rd Row bold g left-parenthesis bold f left-parenthesis bold x Subscript k minus 1 Baseline comma bold u Subscript k minus 1 Baseline right-parenthesis comma bold u Subscript k Baseline right-parenthesis 4th Row bold g left-parenthesis bold x Subscript k Baseline comma bold u Subscript k Baseline right-parenthesis EndMatrix period

      (3.10)bold f Superscript i Baseline equals ModifyingBelow bold f ring bold f ring midline-horizontal-ellipsis ring bold f With presentation form for vertical right-brace Underscript i times Endscripts period

      Given an initial state and the sequence bold u Subscript k minus n Sub Subscript x Subscript plus 1 colon k, the corresponding sequence of predicted outputs is obtained as:

      (3.11)StartLayout 1st Row 1st Column bold upper Phi left-parenthesis bold x Subscript k minus n Sub Subscript x Subscript plus 1 colon k Baseline comma bold u Subscript k minus n Sub Subscript x Subscript plus 1 colon k Baseline right-parenthesis 2nd Column equals Start 6 By 1 Matrix 1st Row ModifyingAbove bold y With Ì‚ Subscript k vertical-bar k minus n Sub Subscript x Subscript Baseline 2nd Row ModifyingAbove bold y With Ì‚ Subscript k vertical-bar k minus n Sub Subscript x Subscript plus 1 Baseline 3rd Row vertical-ellipsis 4th Row ModifyingAbove bold y With Ì‚ Subscript k vertical-bar k minus 3 Baseline 5th Row ModifyingAbove bold y With Ì‚ Subscript k vertical-bar k minus 2 Baseline 6th Row ModifyingAbove bold y With Ì‚ Subscript k vertical-bar k minus 1 Baseline EndMatrix 2nd Row 1st Column Blank 2nd Column equals Start 6 By 1 Matrix 1st Row bold g left-parenthesis bold f Superscript n Super Subscript x Superscript minus 1 Baseline left-parenthesis bold x Subscript k minus n Sub Subscript x Subscript plus 1 Baseline comma bold u Subscript k minus n Sub Subscript x Subscript plus 1 colon k minus 1 Baseline right-parenthesis comma bold u Subscript k Baseline right-parenthesis 2nd Row bold g left-parenthesis bold f Superscript n Super Subscript x Superscript minus 2 Baseline left-parenthesis bold x Subscript k minus n Sub Subscript x Subscript plus 2 Baseline comma bold u Subscript k minus n Sub Subscript x Subscript plus 2 colon k minus 1 Baseline right-parenthesis comma bold u Subscript k Baseline right-parenthesis 3rd Row vertical-ellipsis 4th Row bold g left-parenthesis bold f squared left-parenthesis bold x Subscript k minus 2 Baseline comma bold u Subscript k minus 2 colon k minus 1 Baseline right-parenthesis comma bold u Subscript k Baseline right-parenthesis 5th Row bold g left-parenthesis bold f left-parenthesis bold x Subscript k minus 1 Baseline comma bold u Subscript k minus 1 Baseline right-parenthesis comma bold u Subscript k Baseline right-parenthesis 6th Row bold g left-parenthesis bold x Subscript k Baseline comma bold u Subscript k Baseline right-parenthesis EndMatrix period EndLayout

      To simplify the notation, let us define bold upper F such that

      (3.12)bold g left-parenthesis bold upper F Superscript i Baseline left-parenthesis bold x Subscript k minus i Baseline comma bold u Subscript k minus i colon k Baseline right-parenthesis right-parenthesis equals bold g left-parenthesis bold f Superscript i Baseline left-parenthesis bold x Subscript k minus i Baseline comma bold u Subscript k minus i colon k minus 1 Baseline right-parenthesis comma bold u Subscript k Baseline right-parenthesis comma

      then we have:

bold upper Phi left-parenthesis bold x Subscript k minus n Sub Subscript x Subscript plus 1 colon k Baseline comma bold u Subscript k minus n Sub Subscript x Subscript plus 1 colon k Baseline right-parenthesis equals Start 6 By 1 Matrix 1st Row bold g left-parenthesis bold upper F Superscript n Super Subscript x Superscript minus 1 Baseline left-parenthesis bold x Subscript k minus n Sub Subscript x Subscript plus 1 Baseline comma bold u Subscript k minus n Sub Subscript x Subscript plus 1 colon k Baseline right-parenthesis right-parenthesis 2nd Row bold g left-parenthesis bold upper F Superscript 
              <a href=СКАЧАТЬ