Nonlinear Filters. Simon Haykin
Чтение книги онлайн.

Читать онлайн книгу Nonlinear Filters - Simon Haykin страница 16

Название: Nonlinear Filters

Автор: Simon Haykin

Издательство: John Wiley & Sons Limited

Жанр: Программы

Серия:

isbn: 9781119078159

isbn:

СКАЧАТЬ reason that bold upper Phi left-parenthesis k comma j right-parenthesis is called the state‐transition matrix is that it describes the dynamic behavior of the following autonomous system (a system with no input):

      (2.53)bold x Subscript k plus 1 Baseline equals bold upper A Subscript k Baseline bold x Subscript k

      with bold x Subscript k being obtained from

      (2.54)bold x Subscript k Baseline equals bold upper Phi left-parenthesis k comma 0 right-parenthesis bold x 0 period

      Following a discussion on energy of the system output similar to the continuous‐time case, we reach the following definition for the discrete‐time observability Gramian matrix:

      (2.55)bold upper W Subscript o Baseline left-parenthesis j comma k right-parenthesis equals sigma-summation Underscript i equals j plus 1 Overscript k Endscripts bold upper Phi Superscript upper T Baseline left-parenthesis i comma j plus 1 right-parenthesis bold upper C Subscript i Superscript upper T Baseline bold upper C Subscript i Baseline bold upper Phi left-parenthesis i comma j plus 1 right-parenthesis period

      2.5.3 Discretization of LTV Systems

      (2.57)bold x left-parenthesis t Subscript k plus 1 Baseline right-parenthesis equals bold upper Phi left-parenthesis t Subscript k plus 1 Baseline comma t Subscript k Baseline right-parenthesis bold x left-parenthesis t Subscript k Baseline right-parenthesis plus left-parenthesis integral Subscript t Subscript k Baseline Superscript t Subscript k plus 1 Baseline Baseline bold upper Phi left-parenthesis t Subscript k plus 1 Baseline comma tau right-parenthesis bold upper B left-parenthesis tau right-parenthesis normal d tau right-parenthesis bold u left-parenthesis tau right-parenthesis period

      Therefore, dynamics of the discrete‐time equivalent of the continuous‐time system in (2.36) and (2.37) will be governed by the following state‐space model [19]:

      (2.58)StartLayout 1st Row 1st Column bold x left-parenthesis t Subscript k plus 1 Baseline right-parenthesis 2nd Column equals bold upper Phi left-parenthesis t Subscript k plus 1 Baseline comma t Subscript k Baseline right-parenthesis bold x left-parenthesis t Subscript k Baseline right-parenthesis plus bold upper Gamma left-parenthesis t Subscript k plus 1 Baseline comma t Subscript k Baseline right-parenthesis bold u left-parenthesis t Subscript k Baseline right-parenthesis comma EndLayout

      (2.59)StartLayout 1st Row 1st Column bold y left-parenthesis t Subscript k Baseline right-parenthesis 2nd Column equals bold upper C left-parenthesis t Subscript k Baseline right-parenthesis bold x left-parenthesis t Subscript k Baseline right-parenthesis plus bold upper D left-parenthesis t Subscript k Baseline right-parenthesis bold u left-parenthesis t Subscript k Baseline right-parenthesis comma EndLayout

      where

      (2.60)bold upper Gamma left-parenthesis t Subscript k plus 1 Baseline comma t Subscript k Baseline right-parenthesis equals integral Subscript t Subscript k Baseline Superscript t Subscript k plus 1 Baseline Baseline bold upper Phi left-parenthesis t Subscript k plus 1 Baseline comma tau right-parenthesis bold upper B left-parenthesis tau right-parenthesis normal d tau period

      As mentioned before, observability is a global property for linear systems. However, for nonlinear systems, a weaker form of observability is defined, in which an initial state must be distinguishable only from its neighboring points. Two states bold x Subscript a Baseline left-parenthesis t 0 right-parenthesis and bold x Subscript b Baseline left-parenthesis t 0 right-parenthesis are indistinguishable, if their corresponding outputs are equal: bold y Subscript a Baseline left-parenthesis t right-parenthesis equals bold y Subscript b Baseline left-parenthesis t right-parenthesis for t 0 less-than t less-than upper T, where СКАЧАТЬ