Nonlinear Filters. Simon Haykin
Чтение книги онлайн.

Читать онлайн книгу Nonlinear Filters - Simon Haykin страница 19

Название: Nonlinear Filters

Автор: Simon Haykin

Издательство: John Wiley & Sons Limited

Жанр: Программы

Серия:

isbn: 9781119078159

isbn:

СКАЧАТЬ 1 Baseline left-parenthesis nabla bold g Subscript i Baseline right-parenthesis EndMatrix comma i equals 1 comma ellipsis comma n Subscript y Baseline semicolon j equals 1 comma ellipsis comma k Subscript i Baseline period"/>

      The nonlinear system in (2.61) and (2.62) can be linearized about bold x left-parenthesis t 0 right-parenthesis. Using Taylor series expansion and ignoring higher‐order terms, we will have the following linearized system:

      (2.74)ModifyingAbove bold x With dot left-parenthesis t right-parenthesis almost-equals bold f left-parenthesis bold x left-parenthesis t right-parenthesis comma bold u left-parenthesis t right-parenthesis right-parenthesis StartAbsoluteValue plus StartFraction partial-differential bold f left-parenthesis bold x left-parenthesis t right-parenthesis comma bold u left-parenthesis t right-parenthesis right-parenthesis Over partial-differential bold x EndFraction EndAbsoluteValue Subscript bold x left-parenthesis t 0 right-parenthesis Baseline Subscript bold x left-parenthesis t 0 right-parenthesis Baseline left-parenthesis bold x left-parenthesis t right-parenthesis minus bold x left-parenthesis t 0 right-parenthesis right-parenthesis comma

      (2.75)bold y left-parenthesis t right-parenthesis almost-equals bold g left-parenthesis bold x left-parenthesis t right-parenthesis comma bold u left-parenthesis t right-parenthesis right-parenthesis StartAbsoluteValue plus StartFraction partial-differential bold g left-parenthesis bold x left-parenthesis t right-parenthesis comma bold u left-parenthesis t right-parenthesis right-parenthesis Over partial-differential bold x EndFraction EndAbsoluteValue Subscript bold x left-parenthesis t 0 right-parenthesis Baseline Subscript bold x left-parenthesis t 0 right-parenthesis Baseline left-parenthesis bold x left-parenthesis t right-parenthesis minus bold x left-parenthesis t 0 right-parenthesis right-parenthesis period

      2.6.2 Discrete‐Time Nonlinear Systems

      The state‐space model of a discrete‐time nonlinear system is represented by the following system of nonlinear equations:

      where bold f colon double-struck upper R Superscript n Super Subscript x Superscript Baseline times double-struck upper R Superscript n Super Subscript u Superscript Baseline right-arrow double-struck upper R Superscript n Super Subscript x Superscript is the system function, and bold g colon double-struck upper R Superscript n Super Subscript x Superscript Baseline times double-struck upper R Superscript n Super Subscript u Superscript Baseline right-arrow double-struck upper R Superscript n Super Subscript y Superscript is the measurement function. Similar to the discrete‐time linear case, starting from the initial cycle, system's output vectors at successive cycles till cycle k equals n minus 1 can be written based on the initial state bold x 0 and input vectors bold u Subscript 0 colon n minus 1 as follows: