Nonlinear Filters. Simon Haykin
Чтение книги онлайн.

Читать онлайн книгу Nonlinear Filters - Simon Haykin страница 20

Название: Nonlinear Filters

Автор: Simon Haykin

Издательство: John Wiley & Sons Limited

Жанр: Программы

Серия:

isbn: 9781119078159

isbn:

СКАЧАТЬ 0 comma bold u 0 right-parenthesis comma bold u 1 right-parenthesis comma bold u 2 right-parenthesis comma 4th Row 1st Column vertical-ellipsis 2nd Column equals vertical-ellipsis 5th Row 1st Column bold y Subscript n minus 1 2nd Column equals bold g left-parenthesis bold x Subscript n minus 1 Baseline comma bold u Subscript n minus 1 Baseline right-parenthesis equals bold g left-parenthesis bold f midline-horizontal-ellipsis left-parenthesis bold f left-parenthesis bold x 0 comma bold u 0 right-parenthesis comma ellipsis comma bold u Subscript n minus 1 Baseline right-parenthesis period EndLayout"/>

      Functional powers of the system function bold f can be used to simplify the notation in the aforementioned equations. Functional powers are obtained by repeated composition of a function with itself:

      (2.81)bold f Superscript n Baseline equals bold f ring bold f Superscript n minus 1 Baseline equals bold f Superscript n minus 1 Baseline ring bold f comma n element-of double-struck upper N comma

      1  for .

      2 The following observability matrix is full rank:(2.83)

      where

      (2.84)bold-script upper O Subscript i Baseline equals StartFraction partial-differential Over partial-differential bold x EndFraction Start 4 By 1 Matrix 1st Row bold g Subscript i Baseline left-parenthesis bold x 0 right-parenthesis 2nd Row bold g Subscript i Baseline left-parenthesis bold f left-parenthesis bold x 0 right-parenthesis right-parenthesis 3rd Row vertical-ellipsis 4th Row bold g Subscript i Baseline left-parenthesis bold f Superscript k Super Subscript i Superscript minus 1 Baseline left-parenthesis bold x 0 right-parenthesis right-parenthesis EndMatrix period

      2.6.3 Discretization of Nonlinear Systems

      Unlike linear systems, there is not a general functional representation for discrete‐time equivalents of continuous‐time nonlinear systems. One approach is to find a discrete‐time equivalent for the perturbed state‐space model of the nonlinear system under study [19]. In this approach, first, we need to linearize the nonlinear system in (2.61) and (2.62) about nominal values of state and input vectors, denoted by ModifyingAbove bold x With bar left-parenthesis t right-parenthesis and ModifyingAbove bold u With bar left-parenthesis t right-parenthesis, respectively. The perturbation terms, denoted by delta bold x left-parenthesis t right-parenthesis, delta bold u left-parenthesis t right-parenthesis, and delta bold y left-parenthesis t right-parenthesis, are defined as the difference between the actual and the nominal values of state, input, and output vectors, respectively:

      (2.85)delta bold x left-parenthesis t right-parenthesis equals bold x left-parenthesis t right-parenthesis minus ModifyingAbove bold x With bar left-parenthesis t right-parenthesis comma

      (2.86)delta bold u left-parenthesis t right-parenthesis equals bold u left-parenthesis t right-parenthesis minus ModifyingAbove bold u With bar left-parenthesis t right-parenthesis comma

      (2.87)delta bold y left-parenthesis t right-parenthesis equals bold y left-parenthesis t right-parenthesis minus ModifyingAbove bold y With bar left-parenthesis t right-parenthesis period