Nonlinear Filters. Simon Haykin
Чтение книги онлайн.

Читать онлайн книгу Nonlinear Filters - Simon Haykin страница 12

Название: Nonlinear Filters

Автор: Simon Haykin

Издательство: John Wiley & Sons Limited

Жанр: Программы

Серия:

isbn: 9781119078159

isbn:

СКАЧАТЬ target="_blank" rel="nofollow" href="#fb3_img_img_d01d501d-1b6d-5cb7-ac97-5feaba312fa4.png" alt="bold z left-parenthesis t right-parenthesis equals bold upper T bold x left-parenthesis t right-parenthesis comma"/>

      the transformed state vector bold z will be partitioned to observable modes, bold z Superscript o, and unobservable modes, bold z Superscript o overbar:

      (2.13)bold z left-parenthesis t right-parenthesis equals StartBinomialOrMatrix bold z Superscript o Baseline left-parenthesis t right-parenthesis Choose bold z Superscript o overbar Baseline left-parenthesis t right-parenthesis EndBinomialOrMatrix period

      or equivalently as:

      2.4.2 Discrete‐Time LTI Systems

      The state‐space model of a discrete‐time LTI system is represented by the following algebraic and difference equations:

      where bold x element-of double-struck upper R Superscript n Super Subscript x, bold u element-of double-struck upper R Superscript n Super Subscript u, and bold y element-of double-struck upper R Superscript n Super Subscript y are the state, the input, and the output vectors, respectively, and bold upper A element-of double-struck upper R Superscript n Super Subscript x Superscript times n Super Subscript x, bold upper C element-of double-struck upper R Superscript n Super Subscript y Superscript times n Super Subscript x, bold upper B element-of double-struck upper R Superscript n Super Subscript x Superscript times n Super Subscript u, and bold upper D element-of double-struck upper R Superscript n Super Subscript y Superscript times n Super Subscript u are the system matrices. Starting from the initial cycle, the system output vector at successive cycles up to cycle k equals n minus 1 can be written based on the initial state vector bold x 0 and input vectors bold u Subscript k colon k plus n minus 1 as follows:

      (2.20)StartLayout 1st Row 1st Column bold y Subscript k 2nd Column equals bold upper C bold x Subscript k Baseline plus bold upper D bold u Subscript k Baseline comma 2nd Row 1st Column bold y Subscript k plus 1 2nd Column equals bold upper C bold upper A bold x Subscript k Baseline plus bold upper C bold upper B bold u Subscript k Baseline plus bold upper D bold u Subscript k plus 1 Baseline comma 3rd Row 1st Column bold y Subscript k plus 2 2nd Column equals bold upper C bold upper A squared bold x Subscript k Baseline plus bold upper C bold upper A bold upper B bold u Subscript k Baseline plus bold upper C bold upper 
              <a href=СКАЧАТЬ