.
Чтение книги онлайн.

Читать онлайн книгу - страница 102

Название:

Автор:

Издательство:

Жанр:

Серия:

isbn:

isbn:

СКАЧАТЬ umlaufende rötliche Linie in Abb. 3.12). Diese Näherung gilt exakt, wenn man zu infinitesimalen Carnot‐Teilprozessen übergeht. Wie oben gezeigt, ist bei jedem der einzelnen Kreisprozesse die Entropieänderung null, dies gilt also auch für ihre Summe. Im Inneren des Gesamtprozesses hebt sich die Entropieänderung auf jedem Wegstück gegen die auf demselben Wegstück durch den Nachbarkreisprozess verursachte auf. Einzig die Entropieänderung entlang des Umfangs des Gesamtprozesses bleibt übrig, daher ist die Summe qrev/T entlang des Umfanges gleich null:

image image

      Im Grenzfall infinitesimaler Kreisprozesse fallen die verbleibenden Grenzen der Carnot‐Prozesse genau mit dem Umfang des Gesamtprozesses zusammen und die Summe wird zum Integral; Gl. (3.5) – die besagt, dass qrev/T entlang des Umfanges gleich null ist – folgt dann unmittelbar. Dieses Resultat bedeutet auch, dass dS ein totales Differenzial und folglich S eine Zustandsfunktion ist.

      (b) Die thermodynamische Temperatur

      Wir betrachten eine reversibel zwischen den Temperaturen Tw (Wärmequelle) und T (Wärmesenke) arbeitende Maschine. Aus Gl. (3.9) wissen wir, dass in diesem Fall

      (c) Die Clausius'sche Ungleichung

      Wir wollen nun zeigen, dass die Definition der Entropie mit dem Zweiten Hauptsatz der Thermodynamik vereinbar ist. Dazu erinnern wir uns zunächst daran, dass unter reversiblen Prozessbedingungen mehr Energie in Form von Arbeit übertragen wird als bei irreversiblen Prozessen, |dwrev|≥|dw|. Da dw und dwrev negativ sind, wenn das System Arbeit verrichtet, können wir das auch als −dwrev ≥ −dw oder dw−dwrev = 0 schreiben. Die Innere Energie ist eine Zustandsfunktion; ihre Änderung zwischen zwei Zuständen hängt folglich nicht davon ab, ob der Weg zwischen diesen Zuständen reversibel ist oder nicht. Es gilt also

image

      Folglich ist dqrev−dq = dw−dwrev ≥ 0. Wegen dw−dwrev ≥ 0 folgt dqrev−dq ≥ 0 und somit dqrev ≥ dq. Nach Division durch T ergibt sich dqrev/T ≥ dq/T. Unter Verwendung der thermodynamischen Definition der Entropie (Gl. (3.1a), dS = dqrev/T) erhalten wir somit

      Diesen Ausdruck nennt man Clausius'sche Ungleichung. Die zentrale Bedeutung dieser Ungleichung bei der Diskussion der Freiwilligkeit chemischer Reaktionen werden wir in Abschn. 3.4 erkennen.

      Betrachten wir nun ein abgeschlossenes System, also dq = 0. Aus der Clausius'schen Ungleichung folgt dann

      (3.12)image

      Wir können somit schließen, dass die Entropie eines abgeschlossenen Systems bei einer freiwilligen Zustandsänderung nicht abnehmen kann. Diese Feststellung entspricht inhaltlich dem Zweiten Hauptsatz der Thermodynamik.

      Die Clausius'sche Ungleichung unterstellt, dass freiwillig ablaufende Prozesse notwendigerweise auch irreversible Prozesse sind. Um diese Annahme zu überprüfen, setzen wir die Ungleichung in den Ausdruck für die Gesamtänderung der Entropie ein, die mit einem Prozess einhergeht. Wir erhalten

image

      wobei die Ungleichung einem irreversiblen Prozess und die Gleichung einem reversiblen Prozess entspricht. Dies bedeutet, dass ein freiwillig ablaufender Prozess (dSgesamt > 0) auch ein irreversibler Prozess sein muss. Ein reversibler Prozess, für den dSgesamt = 0 gilt, läuft in keiner Richtung freiwillig ab: das System befindet sich im Gleichgewicht.

image