Mantle Convection and Surface Expressions. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Mantle Convection and Surface Expressions - Группа авторов страница 71

Название: Mantle Convection and Surface Expressions

Автор: Группа авторов

Издательство: John Wiley & Sons Limited

Жанр: Физика

Серия:

isbn: 9781119528593

isbn:

СКАЧАТЬ target="_blank" rel="nofollow" href="https://doi.org/10.1524/zkri.216.9.473.20346">https://doi.org/10.1524/zkri.216.9.473.20346

      122 Hosseini, K., Sigloch, K., Tsekhmistrenko, M., Zaheri, A., Nissen‐Meyer, T., & Igel, H. (2020). Global mantle structure from multifrequency tomography using P, PP and P‐diffracted waves. Geophys. J. Int., 220, 96–141. https://doi.org/10.1093/gji/ggz394

      123 Hsu, H., Blaha, P., Cococcioni, M., & Wentzcovitch, R.M. (2011). Spin‐state crossover and hyperfine interactions of ferric iron in MgSiO3 perovskite. Phys. Rev. Lett., 106, 118501. https://doi.org/10.1103/PhysRevLett.106.118501

      124 Hsu, H., Umemoto, K., Blaha, P., & Wentzcovitch, R.M. (2010a). Spin states and hyperfine interactions of iron in (Mg,Fe)SiO3 perovskite under pressure. Earth Planet. Sci. Lett., 294, 19–26. https://doi.org/10.1016/j.epsl.2010.02.031

      125 Hsu, H., Umemoto, K., Wu, Z., & Wentzcovitch, R.M. (2010b). Spin‐state crossover of iron in lower‐mantle minerals: Results of DFT+U investigations. Rev. Mineral. Geochem, 71, 169–199. https://doi.org/10.2138/rmg.2010.71.09

      126 Hubbard, J. (1963). Electron correlations in narrow energy bands. Proc. R. Soc. Lond. A, 276, 238–257. https://doi.org/10.1098/rspa.1963.0204

      127 Hyung, E., Huang, S., Petaev, M.I., Jacobsen, S.B. (2016). Is the mantle chemically stratified? Insights from sound velocity modeling and isotope evolution of an early magma ocean. Earth Planet. Sci. Lett., 440, 158–168. https://doi.org/10.1016/j.epsl.2016.02.001

      128 Imada, S., Hirose, K., Komabayashi, T., Suzuki, T., & Ohishi, Y. (2012). Compression of Na0.4Mg0.6Al1.6Si0.4O4 NAL and Ca‐ferrite‐type phases. Phys. Chem. Miner., 39, 525–530. https://doi.org/10.1007/s00269‐012‐0508‐x

      129 Immoor, J., Marquardt, H., Miyagi, L., Speziale, S., Merkel, S., Schwark, I., et al. (2020). An improved setup for radial diffraction experiments at high pressures and high temperatures in a resistive graphite‐heated diamond anvil cell. Rev. Sci. Instrum., 91, 045121. https://doi.org/10.1063/1.5143293

      130 Irifune, T., Shinmei, T., McCammon, C.A., Miyajima, N., Rubie, D.C., & Frost, D.J. (2010). Iron partitioning and density changes of pyrolite in Earth’s lower mantle. Science, 327, 193–195. https://doi.org/10.1126/science.1181443

      131 Isaak, D.G. (1992). High‐temperature elasticity of iron‐bearing olivines. J. Geophys. Res. – Solid Earth, 97, 1871–1885. https://doi.org/10.1029/91JB02675

      132 Isaak, D.G., Anderson, O.L., Goto, T., & Suzuki, I. (1989). Elasticity of single‐crystal forsterite measured to 1700 K. J. Geophys. Res. – Solid Earth, 94, 5895–5906. https://doi.org/10.1029/JB094iB05p05895

      133 Ishii, M., & Tromp, J. (1999). Normal‐mode and free‐air gravity constraints on lateral variations in velocity and density of Earth’s mantle. Science, 285, 1231–1236. https://doi.org/10.1126/science.285.5431.1231

      134 Ishii, T., Liu, Z., & Katsura, T. (2019). A breakthrough in pressure generation by a Kawai‐type multi‐anvil apparatus with tungsten carbide anvils. Engineering, 5, 434–440. https://doi.org/10.1016/j.eng.2019.01.013

      135 Ita, J., & Stixrude, L. (1992). Petrology, elasticity, and composition of the mantle transition zone. J. Geophys. Res. – Solid Earth, 97, 6849–6866. https://doi.org/10.1029/92JB00068

      136 Jackson, I. (2015). Properties of rocks and minerals: Physical origins of anelasticity and attenuation in rock. In Schubert, G. (Ed.), Treatise on Geophysics, 2nd ed., Elsevier, Amsterdam, pp. 539–571. https://doi.org/10.1016/B978‐0‐444‐53802‐4.00045‐2

      137 Jackson, I. (1998). Elasticity, composition and temperature of the Earth’s lower mantle: a reappraisal. Geophys. J. Int., 134, 291–311. https://doi.org/10.1046/j.1365‐246x.1998.00560.x

      138 Jackson, J.M., Sturhahn, W., Shen, G., Zhao, J., Hu, M.Y., Errandonea, D., et al. (2005a). A synchrotron Mössbauer spectroscopy study of (Mg,Fe)SiO3 perovskite up to 120 GPa. Am. Mineral., 90, 199–205. https://doi.org/10.2138/am.2005.1633

      139 Jackson, J.M., Zhang, J., Shu, J., Sinogeikin, S.V., Bass, J.D. (2005b). High‐pressure sound velocities and elasticity of aluminous MgSiO3 perovskite to 45 GPa: Implications for lateral heterogeneity in Earth’s lower mantle. Geophys. Res. Lett., 32, L21305. https://doi.org/10.1029/2005GL023522

      140 Jacobsen, S.D., Reichmann, H.‐J., Spetzler, H.A., Mackwell, S.J., Smyth, J.R., et al. (2002). Structure and elasticity of single‐crystal (Mg,Fe)O and a new method of generating shear waves for gigahertz ultrasonic interferometry. J. Geophys. Res. – Solid Earth, 107, ECV 4‐1–ECV 4‐14. https://doi.org/10.1029/2001JB000490

      141 Jacobsen, S.D., Spetzler, H., Reichmann, H.J., & Smyth, J.R. (2004). Shear waves in the diamond‐anvil cell reveal pressure‐induced instability in (Mg,Fe)O. Proc. Natl. Acad. Sci. U.S.A., 101, 5867–5871. https://doi.org/10.1073/pnas.0401564101

      142 Jiang, F., Gwanmesia, G.D., Dyuzheva, T.I., & Duffy, T.S. (2009). Elasticity of stishovite and acoustic mode softening under high pressure by Brillouin scattering. Phys. Earth Planet. Inter., 172, 235–240. https://doi.org/10.1016/j.pepi.2008.09.017

      143 Kaneshima, S., Helffrich, G. (2009). Lower mantle scattering profiles and fabric below Pacific subduction zones. Earth Planet. Sci. Lett., 282, 234–239. https://doi.org/10.1016/j.epsl.2009.03.024

      144 Kantor, I., Prakapenka, V., Kantor, A., Dera, P., Kurnosov, A., Sinogeikin, S., et al. (2012). BX90: A new diamond anvil cell design for X‐ray diffraction and optical measurements. Rev. Sci. Instrum., 83, 125102. https://doi.org/10.1063/1.4768541

      145 Karato, S. (2008). Deformation of Earth Materials: An Introduction to the Rheology of Solid Earth. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511804892

      146 Karato, S. (1993). Importance of anelasticity in the interpretation of seismic tomography. Geophys. Res. Lett., 20, 1623–1626. https://doi.org/10.1029/93GL01767

      147 Karki, СКАЧАТЬ