Mantle Convection and Surface Expressions. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Mantle Convection and Surface Expressions - Группа авторов страница 75

Название: Mantle Convection and Surface Expressions

Автор: Группа авторов

Издательство: John Wiley & Sons Limited

Жанр: Физика

Серия:

isbn: 9781119528593

isbn:

СКАЧАТЬ and stability. Phys. Rev. B, 67, 224110. https://doi.org/10.1103/PhysRevB.67.224110

      225 Ohnishi, S. (1978). A theory of the pressure‐induced high‐spin–low‐spin transition of transition‐metal oxides. Phys. Earth Planet. Inter., 17, 130–139. https://doi.org/10.1016/0031‐9201(78)90054‐7

      226 Ohnishi, S., & Sugano, S. (1981). Strain interaction effects on the high‐spin–low‐spin transition of transition‐metal compounds. J. Phys. C; Solid State Phys., 14, 39–55. https://doi.org/10.1088/0022‐3719/14/1/007

      227 Ono, S., Ito, E., & Katsura, T. (2001). Mineralogy of subducted basaltic crust (MORB) from 25 to 37 GPa, and chemical heterogeneity of the lower mantle. Earth Planet. Sci. Lett., 190, 57–63. https://doi.org/10.1016/S0012‐821X(01)00375‐2

      228 Perdew, J.P., & Ruzsinszky, A. (2010). Density functional theory of electronic structure: a short course for mineralogists and geophysicists. Rev. Mineral. Geochem., 71, 1–18. https://doi.org/10.2138/rmg.2010.71.1

      229 Perrillat, J.‐P., Ricolleau, A., Daniel, I., Fiquet, G., Mezouar, M., Guignot, N., & Cardon, H. (2006). Phase transformations of subducted basaltic crust in the upmost lower mantle. Phys. Earth Planet. Inter., 157, 139–149. https://doi.org/10.1016/j.pepi.2006.04.001

      230  Persson, K., Bengtson, A., Ceder, G., & Morgan, D. (2006). Ab initio study of the composition dependence of the pressure‐induced spin transition in the (Mg1‐x,Fe x)O system. Geophys. Res. Lett., 33, L16306. https://doi.org/10.1029/2006GL026621

      231 Piet, H., Badro, J., Nabiei, F., Dennenwaldt, T., Shim, S.‐H., Cantoni, M., Hébert, C., & Gillet, P. (2016). Spin and valence dependence of iron partitioning in Earth’s deep mantle. Proc. Natl. Acad. Sci. U.S.A., 113, 11127–11130. https://doi.org/10.1073/pnas.1605290113

      232 Prescher, C., Langenhorst, F., Dubrovinsky, L.S., Prakapenka, V.B., & Miyajima, N. (2014). The effect of Fe spin crossovers on its partitioning behavior and oxidation state in a pyrolitic Earth’s lower mantle system. Earth Planet. Sci. Lett., 399, 86–91. https://doi.org/10.1016/j.epsl.2014.05.011

      233 Rainey, E.S.G., & Kavner, A. (2014). Peak scaling method to measure temperatures in the laser‐heated diamond anvil cell and application to the thermal conductivity of MgO. J. Geophys. Res. – Solid Earth, 119, 8154–8170. https://doi.org/10.1002/2014JB011267

      234 Reichmann, H.J., Angel, R.J., Spetzler, H., & Bassett, W.A. (1998). Ultrasonic interferometry and X‐ray measurements on MgO in a new diamond anvil cell. Am. Mineral., 83, 1357–1360. https://doi.org/10.2138/am‐1998‐11‐1226

      235 Reichmann, H.J., & Jacobsen, S.D. (2004). High‐pressure elasticity of a natural magnetite crystal. Am. Mineral., 89, 1061–1066. https://doi.org/10.2138/am‐2004‐0718

      236 Reuss, A. (1929.) Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. Z. Angew. Math. Mech., 9, 49–58 (in German). https://doi.org/10.1002/zamm.19290090104

      237 Richards, M.A., & Engebretson, D.C. (1992). Large‐scale mantle convection and the history of subduction. Nature, 355, 437–440. https://doi.org/10.1038/355437a0

      238 Richmond, N.C., & Brodholt, J.P. (1998). Calculated role of aluminum in the incorporation of ferric iron into magnesium silicate perovskite. Am. Mineral., 83, 947–951. https://doi.org/10.2138/am‐1998‐9‐1003

      239 Ricolleau, A., Perrillat, J.‐P., Fiquet, G., Daniel, I., Matas, J., Addad, A., et al. (2010). Phase relations and equation of state of a natural MORB: Implications for the density profile of subducted oceanic crust in the Earth’s lower mantle. J. Geophys. Res. – Solid Earth, 115, B08202. https://doi.org/10.1029/2009JB006709

      240 Rost, S., Garnero, E.J., & Williams, Q. (2008). Seismic array detection of subducted oceanic crust in the lower mantle. J. Geophys. Res. – Solid Earth, 113, B06303. https://doi.org/10.1029/2007JB005263

      241 Sakai, T., Ohtani, E., Terasaki, H., Sawada, N., Kobayashi, Y., Miyahara, M., et al. (2009). Fe‐Mg partitioning between perovskite and ferropericlase in the lower mantle. Am. Mineral., 94, 921–925. https://doi.org/10.2138/am.2009.3123

      242 Sammis, C., Anderson, D., & Jordan, T. (1970). Application of isotropic finite strain theory to ultrasonic and seismological data. J. Geophys. Res., 75, 4478–4480. https://doi.org/10.1029/JB075i023p04478

      243 Schreuer, J., & Haussühl, S. (2005). Elastic and piezoelectric properties of minerals I. Principles and experimental approaches. In Miletich, R. (Ed.), Mineral Behaviour at Extreme Conditions. European Mineralogical Union, pp. 95–116. https://doi.org/10.1180/EMU‐notes.7.4

      244 Schuberth, B.S.A., Bunge, H.‐P., & Ritsema, J. (2009a). Tomographic filtering of high‐resolution mantle circulation models: Can seismic heterogeneity be explained by temperature alone? Geochem. Geophys. Geosystems, 10, Q05W03. https://doi.org/10.1029/2009GC002401

      245 Schuberth, B.S.A., Bunge, H.‐P., Steinle‐Neumann, G., Moder, C., Oeser, J. (2009). Thermal versus elastic heterogeneity in high‐resolution mantle circulation models with pyrolite composition: High plume excess temperatures in the lowermost mantle. Geochem. Geophys. Geosystems, 10, Q01W01. https://doi.org/10.1029/2008GC002235

      246 Schulze, K., Marquardt, H., Kawazoe, T., Boffa Ballaran, T., McCammon, C., Koch‐Müller, M., et al. (2018). Seismically invisible water in Earth’s transition zone? Earth Planet. Sci. Lett., 498, 9–16. https://doi.org/10.1016/j.epsl.2018.06.021

      247 Sherman, D.M. (1991). The high‐pressure electronic structure of magnesiowustite (Mg, Fe)O: Applications to the physics and chemistry of the lower mantle. J. Geophys. Res. – Solid Earth, 96, 14299–14312. https://doi.org/10.1029/91JB01202

      248 Sherman, D.M. (1985). The electronic structures of Fe3+ coordination sites in iron oxides: Applications to spectra, bonding, and magnetism. Phys. Chem. Miner., 12, 161–175. https://doi.org/10.1007/BF00308210

      249 Shim, СКАЧАТЬ