Mantle Convection and Surface Expressions. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Mantle Convection and Surface Expressions - Группа авторов страница 67

Название: Mantle Convection and Surface Expressions

Автор: Группа авторов

Издательство: John Wiley & Sons Limited

Жанр: Физика

Серия:

isbn: 9781119528593

isbn:

СКАЧАТЬ A.‐L., Badro, J., Ryerson, F.J., Weber, P.K., Fallon, S.J., Addad, A., et al. (2008). Element partitioning between magnesium silicate perovskite and ferropericlase: New insights into bulk lower‐mantle geochemistry. Earth Planet. Sci. Lett., 269, 164–174. https://doi.org/10.1016/j.epsl.2008.02.001

      16 Badro, J. (2014). Spin transitions in mantle minerals. Annu. Rev. Earth Planet. Sci., 42, 231–248. https://doi.org/10.1146/annurev‐earth‐042711‐105304

      17 Badro, J., Fiquet, G., & Guyot, F. (2005). Thermochemical state of the lower mantle: New insights from mineral physics. In van der Hilst, R.D., Bass, J.D., Matas, J., Trampert, J. (Eds.), Earth’s Deep Mantle: Structure, Composition, and Evolution. American Geophysical Union, Washington, D.C., pp. 241–260. https://doi.org/10.1029/160GM15

      18 Badro, J., Fiquet, G., Guyot, F., Gregoryanz, E., Occelli, F., Antonangeli, D., & d’Astuto, M. (2007). Effect of light elements on the sound velocities in solid iron: Implications for the composition of Earth’s core. Earth Planet. Sci. Lett., 254, 233–238. https://doi.org/10.1016/j.epsl.2006.11.025

      19 Badro, J., Fiquet, G., Guyot, F., Rueff, J.‐P., Struzhkin, V.V., Vankó, G., & Monaco, G. (2003). Iron partitioning in Earth’s mantle: toward a deep lower mantle discontinuity. Science, 300, 789–791. https://doi.org/10.1126/science.1081311

      20 Badro, J., Rueff, J.‐P., Vankó, G., Monaco, G., Fiquet, G., & Guyot, F. (2004). Electronic transitions in perovskite: possible nonconvecting layers in the lower mantle. Science, 305, 383–386. https://doi.org/10.1126/science.1098840

      21 Ballmer, M.D., Houser, C., Hernlund, J.W., Wentzcovitch, R.M., & Hirose, K. (2017a). Persistence of strong silica‐enriched domains in the Earth’s lower mantle. Nat. Geosci., 10, 236–240. https://doi.org/10.1038/ngeo2898

      22 Ballmer, M.D., Lourenço, D.L., Hirose, K., Caracas, R., & Nomura, R. (2017b). Reconciling magma‐ocean crystallization models with the present‐day structure of the Earth’s mantle. Geochem. Geophys. Geosystems, 18, 2785–2806. https://doi.org/10.1002/2017GC006917

      23 Ballmer, M.D., Schmerr, N.C., Nakagawa, T., & Ritsema, J. (2015). Compositional mantle layering revealed by slab stagnation at ~1000‐km depth. Sci. Adv., 1, e1500815. https://doi.org/10.1126/sciadv.1500815

      24 Baroni, S., de Gironcoli, S., Dal Corso, A., & Giannozzi, P. (2001). Phonons and related crystal properties from density‐functional perturbation theory. Rev. Mod. Phys., 73, 515–562. https://doi.org/10.1103/RevModPhys.73.515

      25 Baroni, S., Giannozzi, P., & Testa, A. (1987a). Elastic constants of crystals from linear‐response theory. Phys. Rev. Lett., 59, 2662–2665. https://doi.org/10.1103/PhysRevLett.59.2662

      26 Baroni, S., Giannozzi, P., & Testa, A. (1987b). Green’s‐function approach to linear response in solids. Phys. Rev. Lett., 58, 1861–1864. https://doi.org/10.1103/PhysRevLett.58.1861

      27 Bass, J.D., & Anderson, D.L. (1984). Composition of the upper mantle: geophysical tests of two petrological models. Geophys. Res. Lett., 11, 229–232. https://doi.org/10.1029/GL011i003p00229

      28 Bassett, W.A., Reichmann, H.‐J., Angel, R.J., Spetzler, H., & Smyth, J.R. (2000). New diamond anvil cells for gigahertz ultrasonic interferometry and X‐ray diffraction. Am. Mineral., 85, 283–287. https://doi.org/10.2138/am‐2000‐2‐303

      29 Birch, F. (1964). Density and composition of mantle and core. J. Geophys. Res., 69, 4377–4388. https://doi.org/10.1029/JZ069i020p04377

      30 Birch, F. (1952). Elasticity and constitution of the Earth’s interior. J. Geophys. Res., 57, 227–286. https://doi.org/10.1029/JZ057i002p00227

      31 Birch, F. (1947). Finite elastic strain of cubic crystals. Phys. Rev., 71, 809–824. https://doi.org/10.1103/PhysRev.71.809

      32 Birch, F. (1939). The variation of seismic velocities within a simplified Earth model, in accordance with the theory of finite strain. Bull. Seismol. Soc. Am., 29, 463–479.

      33 Birch, F. (1938). The effect of pressure upon the elastic parameters of isotropic solids, according to Murnaghan’s theory of finite strain. J. Appl. Phys., 9, 279–288. https://doi.org/10.1063/1.1710417

      34 Boffa Ballaran, T., Kurnosov, A., Glazyrin, K., Frost, D.J., Merlini, M., Hanfland, M., & Caracas, R. (2012). Effect of chemistry on the compressibility of silicate perovskite in the lower mantle. Earth Planet. Sci. Lett., 333–334, 181–190. https://doi.org/10.1016/j.epsl.2012.03.029

      35 Boffa Ballaran, T., Kurnosov, A., & Trots, D. (2013). Single‐crystal X‐ray diffraction at extreme conditions: a review. High Press. Res., 33, 453–465. https://doi.org/10.1080/08957959.2013.834052

      36  Bolfan‐Casanova, N., Andrault, D., Amiguet, E., & Guignot, N. (2009). Equation of state and post‐stishovite transformation of Al‐bearing silica up to 100 GPa and 3000 K. Phys. Earth Planet. Inter., 174, 70–77. https://doi.org/10.1016/j.pepi.2008.06.024

      37 Boukaré, C.‐E., Ricard, Y., & Fiquet, G. (2015). Thermodynamics of the MgO‐FeO‐SiO2 system up to 140 GPa: Application to the crystallization of Earth’s magma ocean. J. Geophys. Res. – Solid Earth, 120, 6085–6101. https://doi.org/10.1002/2015JB011929

      38 Bower, D.J., Wicks, J.K., Gurnis, M., & Jackson, J.M. (2011). A geodynamic and mineral physics model of a solid‐state ultralow‐velocity zone. Earth Planet. Sci. Lett., 303, 193–202. https://doi.org/10.1016/j.epsl.2010.12.035

      39 Brandenburg, J.P., v& an Keken, P.E. (2007). Deep storage of oceanic crust in a vigorously convecting mantle. J. Geophys. Res. – Solid Earth, 112, B06403. https://doi.org/10.1029/2006JB004813

      40 Buchen, J., Marquardt, H., Ballaran, T.B., Kawazoe, T., & McCammon, C. (2017). The equation of state of wadsleyite solid solutions: constraining the effects of anisotropy and crystal chemistry. Am. Mineral., 102, 2494–2504. https://doi.org/10.2138/am‐2017‐6162

СКАЧАТЬ