Mantle Convection and Surface Expressions. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Mantle Convection and Surface Expressions - Группа авторов страница 74

Название: Mantle Convection and Surface Expressions

Автор: Группа авторов

Издательство: John Wiley & Sons Limited

Жанр: Физика

Серия:

isbn: 9781119528593

isbn:

СКАЧАТЬ https://doi.org/10.1111/j.1365‐246X.2007.03454.x

      198 Mattern, E., Matas, J., Ricard, Y., & Bass, J. (2005). Lower mantle composition and temperature from mineral physics and thermodynamic modelling. Geophys. J. Int., 160, 973–990. https://doi.org/10.1111/j.1365‐246X.2004.02549.x

      199 McDonough, W.F., & Sun, S. ‐s. (1995). The composition of the Earth. Chem. Geol., 120, 223–253. https://doi.org/10.1016/0009‐2541(94)00140‐4

      200 McNamara, A.K. (2019). A review of large low shear velocity provinces and ultra low velocity zones. Tectonophysics, 760, 199–220. https://doi.org/10.1016/j.tecto.2018.04.015

      201 Méndez, A.S.J., Marquardt, H., Husband, R.J., Schwark, I., Mainberger, J., Glazyrin, K., et al. (2020). A resistively‐heated dynamic diamond anvil cell (RHdDAC) for fast compression x‐ray diffraction experiments at high temperatures. Rev. Sci. Instrum., 91, 073906. https://doi.org/10.1063/5.0007557.

      202 Miletich, R., Hejny, C., Krauss, G., & Ullrich, A. (2005). Diffraction techniques: Shedding light on structural changes at extreme conditions. In Miletich, R. (Ed.), Mineral Behaviour at Extreme Conditions. European Mineralogical Union, pp. 281–338. https://doi.org/10.1180/EMU‐notes.7.13

      203 Mookherjee, M. (2011). Mid‐mantle anisotropy: Elasticity of aluminous phases in subducted MORB. Geophys. Res. Lett., 38, L14302. https://doi.org/10.1029/2011GL047923

      204 Morgan, J.P., & Morgan, W.J. (1999). Two‐stage melting and the geochemical evolution of the mantle: a recipe for mantle plum‐pudding. Earth Planet. Sci. Lett., 170, 215–239. https://doi.org/10.1016/S0012‐821X(99)00114‐4

      205 Muir, J.M.R., & Brodholt, J.P. (2016). Ferrous iron partitioning in the lower mantle. Phys. Earth Planet. Inter., 257, 12–17. https://doi.org/10.1016/j.pepi.2016.05.008

      206 Muir, J.M.R., & Brodholt, J.P. (2015a). Elastic properties of ferrous bearing MgSiO3 and their relevance to ULVZs. Geophys. J. Int., 201, 496–504. https://doi.org/10.1093/gji/ggv045

      207 Muir, J.M.R., & Brodholt, J.P. (2015b). Elastic properties of ferropericlase at lower mantle conditions and its relevance to ULVZs. Earth Planet. Sci. Lett., 417, 40–48. https://doi.org/10.1016/j.epsl.2015.02.023

      208 Murakami, M., Asahara, Y., Ohishi, Y., Hirao, N., & Hirose, K. (2009a). Development of in situ Brillouin spectroscopy at high pressure and high temperature with synchrotron radiation and infrared laser heating system: Application to the Earth’s deep interior. Phys. Earth Planet. Inter., 174, 282–291. https://doi.org/10.1016/j.pepi.2008.07.030

      209 Murakami, M., Hirose, K., Kawamura, K., Sata, N., & Ohishi, Y. (2004). Post‐perovskite phase transition in MgSiO3. Science, 304, 855–858. https://doi.org/10.1126/science.1095932

      210 Murakami, M., Hirose, K., Sata, N., & Ohishi, Y. (2005). Post‐perovskite phase transition and mineral chemistry in the pyrolitic lowermost mantle. Geophys. Res. Lett., 32, L03304. https://doi.org/10.1029/2004GL021956

      211 Murakami, M., Ohishi, Y., Hirao, N., & Hirose, K. (2012). A perovskitic lower mantle inferred from high‐pressure, high‐temperature sound velocity data. Nature, 485, 90–94. https://doi.org/10.1038/nature11004

      212 Murakami, M., Ohishi, Y., Hirao, N., & Hirose, K. (2009b). Elasticity of MgO to 130 GPa: Implications for lower mantle mineralogy. Earth Planet. Sci. Lett., 277, 123–129. https://doi.org/10.1016/j.epsl.2008.10.010

      213 Murakami, M., Sinogeikin, S.V., Hellwig, H., Bass, J.D., & Li, J. (2007). Sound velocity of MgSiO3 perovskite to Mbar pressure. Earth Planet. Sci. Lett., 256, 47–54. https://doi.org/10.1016/j.epsl.2007.01.011

      214 Murnaghan, F.D. (1937). Finite deformations of an elastic solid. Am. J. Math., 59, 235–260. https://doi.org/10.2307/2371405

      215 Nagai, T., Hamane, D., Devi, P.S., Miyajima, N., Yagi, T., Yamanaka, T., & Fujino, K. (2005). A new polymorph of FeAlO3 at high pressure. J. Phys. Chem. B, 109, 18226–18229. https://doi.org/10.1021/jp054409s

      216 Nakagawa, T., Tackley, P.J., Deschamps, F., & Connolly, J.A.D. (2010). The influence of MORB and harzburgite composition on thermo‐chemical mantle convection in a 3‐D spherical shell with self‐consistently calculated mineral physics. Earth Planet. Sci. Lett., 296, 403–412. https://doi.org/10.1016/j.epsl.2010.05.026

      217 Nakajima, Y., Frost, D.J., & Rubie, D.C. (2012). Ferrous iron partitioning between magnesium silicate perovskite and ferropericlase and the composition of perovskite in the Earth’s lower mantle. J. Geophys. Res. – Solid Earth, 117, B08201. https://doi.org/10.1029/2012JB009151

      218 Nielsen, O.H., & Martin, R.M. (1985). Quantum‐mechanical theory of stress and force. Phys. Rev. B, 32, 3780–3791. https://doi.org/10.1103/PhysRevB.32.3780

      219 Nomura, R., Hirose, K., Sata, N., & Ohishi, Y. (2010). Precise determination of post‐stishovite phase transition boundary and implications for seismic heterogeneities in the mid‐lower mantle. Phys. Earth Planet. Inter., 183, 104–109. https://doi.org/10.1016/j.pepi.2010.08.004

      220 Norby, P., & Schwarz, U. (2008). Powder diffraction under non‐ambient conditions. In Dinnebier, R.E., Billinge, S.J.L. (Eds.), Powder Diffraction: Theory and Practice. Royal Society of Chemistry, Cambridge, pp. 439–463. https://doi.org/10.1039/9781847558237‐00439

      221 Nye, J.F. (1985). Physical Properties of Crystals: Their Representation by Tensors and Matrices. Oxford University Press, Oxford.

      222 Oganov, A.R., Brodholt, J.P., & Price, G.D. (2001). The elastic constants of MgSiO3 perovskite at pressures and temperatures of the Earth’s mantle. Nature, 411, 934–937. https://doi.org/10.1038/35082048

      223 Oganov, A.R., & Dorogokupets, P.I. (2004). Intrinsic anharmonicity in equations of state and thermodynamics of solids. J. Phys.: Condens. Matter, 16, 1351–1360. https://doi.org/10.1088/0953‐8984/16/8/018

      224 Oganov, СКАЧАТЬ