Mantle Convection and Surface Expressions. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Mantle Convection and Surface Expressions - Группа авторов страница 70

Название: Mantle Convection and Surface Expressions

Автор: Группа авторов

Издательство: John Wiley & Sons Limited

Жанр: Физика

Серия:

isbn: 9781119528593

isbn:

СКАЧАТЬ R.A., Campbell, A.J., Chidester, B.A., Reaman, D.M., Thompson, E.C., Pigott, J.S., et al. (2018). Equations of state and phase boundary for stishovite and CaCl2‐type SiO2. Am. Mineral., 103, 792–802. https://doi.org/10.2138/am‐2018‐6267

      95 Frost, D.A., Rost, S., Garnero, E.J., & Li, M. (2017). Seismic evidence for Earth’s crusty deep mantle. Earth Planet. Sci. Lett., 470, 54–63. https://doi.org/10.1016/j.epsl.2017.04.036

      96 Frost, D.J., & Langenhorst, F. (2002). The effect of Al2O3 on Fe‐Mg partitioning between magnesiowüstite and magnesium silicate perovskite. Earth Planet. Sci. Lett., 199, 227–241.

      97 Frost, D.J., Liebske, C., Langenhorst, F., McCammon, C.A., Trønnes, R.G., & Rubie, D.C. (2004). Experimental evidence for the existence of iron‐rich metal in the Earth’s lower mantle. Nature, 428, 409–412. https://doi.org/10.1038/nature02413

      98 Fu, S., Yang, J., Tsujino, N., Okuchi, T., Purevjav, N., & Lin, J.‐F. (2019). Single‐crystal elasticity of (Al,Fe)‐bearing bridgmanite and seismic shear wave radial anisotropy at the topmost lower mantle. Earth Planet. Sci. Lett., 518, 116–126. https://doi.org/10.1016/j.epsl.2019.04.023

      99 Fu, S., Yang, J., Zhang, Y., Okuchi, T., McCammon, C., Kim, H.‐I., et al. (2018). Abnormal elasticity of Fe‐bearing bridgmanite in the Earth’s lower mantle. Geophys. Res. Lett., 45, 4725–4732. https://doi.org/10.1029/2018GL077764

      100 Fujino, K., Nishio‐Hamane, D., Suzuki, K., Izumi, H., Seto, Y., & Nagai, T. (2009). Stability of the perovskite structure and possibility of the transition to the post‐perovskite structure in CaSiO3, FeSiO3, MnSiO3 and CoSiO3. Phys. Earth Planet. Inter., 177, 147–151. https://doi.org/10.1016/j.pepi.2009.08.009

      101 Fukao, Y., & Obayashi, M. (2013). Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity. J. Geophys. Res. – Solid Earth, 118, 5920–5938. https://doi.org/10.1002/2013JB010466

      102 Funamori, N., & Jeanloz, R. (1997). High‐pressure transformation of Al2O3. Science, 278, 1109–1111. https://doi.org/10.1126/science.278.5340.1109

      103 Funamori, N., Jeanloz, R., Miyajima, N., & Fujino, K. (2000). Mineral assemblages of basalt in the lower mantle. J. Geophys. Res. – Solid Earth, 105, 26037–26043. https://doi.org/10.1029/2000JB900252

      104 Gaffney, E.S. (1972). Crystal field effects in mantle minerals. Phys. Earth Planet. Inter., 6, 385–390. https://doi.org/10.1016/0031‐9201(72)90062‐3

      105 Gaffney, E.S., & Anderson, D.L. (1973). Effect of low‐spin Fe2+ on the composition of the lower mantle. J. Geophys. Res., 78, 7005–7014. https://doi.org/10.1029/JB078i029p07005

      106 Garnero, E.J., McNamara, A.K., & Shim, S.‐H. (2016). Continent‐sized anomalous zones with low seismic velocity at the base of Earth’s mantle. Nat. Geosci., 9, 481–489. https://doi.org/10.1038/ngeo2733

      107 Giannozzi, P., de Gironcoli, S., Pavone, P., & Baroni, S. (1991). Ab initio calculation of phonon dispersions in semiconductors. Phys. Rev. B, 43, 7231–7242. https://doi.org/10.1103/PhysRevB.43.7231

      108 Giura, P., Paulatto, L., He, F., Lobo, R.P.S.M., Bosak, A., Calandrini, E., et al. (2019). Multiphonon anharmonicity of MgO. Phys. Rev. B, 99, 220304. https://doi.org/10.1103/PhysRevB.99.220304

      109 Glazyrin, K., Boffa Ballaran, T., Frost, D.J., McCammon, C., Kantor, A., Merlini, M., et al. (2014). Magnesium silicate perovskite and effect of iron oxidation state on its bulk sound velocity at the conditions of the lower mantle. Earth Planet. Sci. Lett., 393, 182–186. https://doi.org/10.1016/j.epsl.2014.01.056

      110 Gréaux, S., Irifune, T., Higo, Y., Tange, Y., Arimoto, T., Liu, Z., & Yamada, A. (2019). Sound velocity of CaSiO3 perovskite suggests the presence of basaltic crust in the Earth’s lower mantle. Nature, 565, 218–221. https://doi.org/10.1038/s41586‐018‐0816‐5

      111 Gréaux, S., Kono, Y., Wang, Y., Yamada, A., Zhou, C., Jing, Z., et al. (2016). Sound velocities of aluminum‐bearing stishovite in the mantle transition zone. Geophys. Res. Lett., 43, 4239–4246. https://doi.org/10.1002/2016GL068377

      112 Gwanmesia, G.D., Liebermann, R.C., & Guyot, F. (1990). Hot‐pressing and characterization of polycrystals of β‐Mg2SiO4, for acoustic velocity measurements. Geophys. Res. Lett., 17, 1331–1334. https://doi.org/10.1029/GL017i009p01331

      113 Haussühl, S. (2007). Physical Properties of Crystals: An Introduction. Wiley‐VCH, Weinheim. https://doi.org/10.1002/9783527621156

      114 Hill, R. (1952). The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc., A65, 349–354. https://doi.org/10.1088/0370‐1298/65/5/307

      115 Hirose, K., Fei, Y., Ma, Y., & Mao, H.‐K. (1999). The fate of subducted basaltic crust in the Earth’s lower mantle. Nature, 397, 53–56. https://doi.org/10.1038/16225

      116 Hirose, K., Takafuji, N., Sata, N., & Ohishi, Y. (2005). Phase transition and density of subducted MORB crust in the lower mantle. Earth Planet. Sci. Lett., 237, 239–251. https://doi.org/10.1016/j.epsl.2005.06.035

      117 Hofmann, A.W. (1997). Mantle geochemistry: the message from oceanic volcanism. Nature, 385, 219–229. https://doi.org/10.1038/385219a0

      118 Hohenberg, P., & Kohn, W. (1964). Inhomogeneous electron gas. Phys. Rev., 136, B864–B871. https://doi.org/10.1103/PhysRev.136.B864

      119 Holland, T.J.B., Hudson, N.F.C., Powell, R., & Harte, B. (2013). New thermodynamic models and calculated phase equilibria in NCFMAS for basic and ultrabasic compositions through the transition zone into the uppermost lower mantle. J. Petrol., 54, 1901–1920. https://doi.org/10.1093/petrology/egt035

      120 Holmström, E., & Stixrude, L. (2015). Spin crossover in ferropericlase from first‐principles molecular dynamics. Phys. Rev. Lett., 114, 117202. https://doi.org/10.1103/PhysRevLett.114.117202

      121 Holzapfel, СКАЧАТЬ