Mantle Convection and Surface Expressions. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Mantle Convection and Surface Expressions - Группа авторов страница 45

Название: Mantle Convection and Surface Expressions

Автор: Группа авторов

Издательство: John Wiley & Sons Limited

Жанр: Физика

Серия:

isbn: 9781119528593

isbn:

СКАЧАТЬ style="font-size:15px;">      173 Shim, S.‐H., Duffy, T. S., Jeanloz, R., & Shen, G. (2004). Stability and crystal structure of MgSiO3 perovskite to the core‐mantle boundary. Geophysical Research Letters, 31(10). https://doi.org/10.1029/2004GL019639

      174 Singh, A. K. (1993). The lattice strains in a specimen (cubic system) compressed nonhydrostatically in an opposed anvil device. Journal of Applied Physics, 73(9), 4278–4286. https://doi.org/10.1063/1.352809

      175 Singh, A. K., Mao, H., Shu, J., & Hemley, R. J. (1998). Estimation of Single‐Crystal Elastic Moduli from Polycrystalline X‐Ray Diffraction at High Pressure: Application to FeO and Iron. Physical Review Letters, 80(10), 2157–2160. https://doi.org/10.1103/PhysRevLett.80.2157

      176 Singh, A. K., Liermann, H. P., & Saxena, S. K. (2004). Strength of magnesium oxide under high pressure: Evidence for the grain‐size dependence. Solid State Communications, 132(11), 795–798. https://doi.org/10.1016/j.ssc.2004.09.050

      177 Stretton, I., Heidelbach, F., Mackwell, S., & Langenhorst, F. (2001). Dislocation creep of magnesiowuüstite (Mg0.8Fe0.2O). Earth and Planetary Science Letters, 194, 229–240.

      178 Takeda, Y.‐T. (1998). Flow in rocks modelled as multiphase continua: Application to polymineralic rocks. Journal of Structural Geology, 20(11), 1569–1578. https://doi.org/10.1016/S0191‐8141(98)00043‐1

      179 Takeda, Y.‐T., & Griera, A. (2006). Rheological and kinematical responses to flow of two‐phase rocks. Tectonophysics, 427(1–4), 95–113. https://doi.org/10.1016/J.TECTO.2006.03.050

      180 Tommaseo, C. E., Devine, J., Merkel, S., Speziale, S., & Wenk, H. R. (2006). Texture development and elastic stresses in magnesiowustite at high pressure. Physics and Chemistry of Minerals, 33(2), 84–97. https://doi.org/10.1007/s00269‐005‐0054‐x

      181 Tommasi, A., Goryaeva, A., Carrez, P., Cordier, P., & Mainprice, D. (2018). Deformation, crystal preferred orientations, and seismic anisotropy in the Earth’s D″ layer. Earth and Planetary Science Letters, 492, 35–46. https://doi.org/10.1016/J.EPSL.2018.03.032

      182 Treagus, S. H. (2002). Modelling the bulk viscosity of two‐phase mixtures in terms of clast shape. Journal of Structural Geology, 24(1), 57–76. https://doi.org/10.1016/S0191‐8141(01)00049‐9

      183 Tsuchiya, T., & Tsuchiya, J. (2007). Structure and elasticity of Cmcm CaIrO3 and their pressure dependences: Ab initio calculations. Physical Review B ‐ Condensed Matter and Materials Physics, 76(14), 2–5. https://doi.org/10.1103/PhysRevB.76.144119

      184 Tsujino, N., Nishihara, Y., Yamazaki, D., Seto, Y., Higo, Y., & Takahashi, E. (2016). Mantle dynamics inferred from the crystallographic preferred orientation of bridgmanite. Nature, 539(7627), 81–84. https://doi.org/10.1038/nature19777

      185 Tullis, J., & Wenk, H.‐R. (1994). Effect of muscovite on the strength and lattice preferred orientations of experimentally deformed quartz aggregates. Materials Science and Engineering: A, 175(1–2), 209–220. https://doi.org/10.1016/0921‐5093(94)91060‐X

      186 Tullis, T. E., Horowitz, F. G., & Tullis, J. (1991). Flow laws of polyphase aggregates from end‐member flow laws. Journal of Geophysical Research, 96(B5), 8081. https://doi.org/10.1029/90JB02491

      187 Turner, P. A., & Tomé, C. N. (1994). A study of residual stresses in Zircaloy‐2 with rod texture. Acta Metallurgica et Materialia, 42(12), 4143–4153. https://doi.org/10.1016/0956‐7151(94)90191‐0

      188 Uchida, T., Wang, Y., Rivers, M. L., & Sutton, S. R. (2004). Yield strength and strain hardening of MgO up to 8 GPa measured in the deformation‐DIA with monochromatic X‐ray diffraction. Earth and Planetary Science Letters, 226(1–2), 117–126. https://doi.org/10.1016/j.epsl.2004.07.023

      189 van’t Hoff, M. J. H. (1884). Etudes de dynamique chimique. Amsterdam: Fredrick Muller and Company. https://doi.org/10.1002/recl.18840031003

      190 Walker, A. M., Forte, A. M., Wookey, J., Nowacki, A., & Kendall, J. M. (2011). Elastic anisotropy of D′′ predicted from global models of mantle flow. Geochemistry, Geophysics, Geosystems, 12(10), 1–22. https://doi.org/10.1029/2011GC003732

      191 Walker, A. M., Dobson, D. P., Wookey, J., Nowacki, A., & Forte, A. M. (2018). The anisotropic signal of topotaxy during phase transitions in D″. Physics of the Earth and Planetary Interiors, 276, 159–171. https://doi.org/10.1016/j.pepi.2017.05.013

      192 Walte, N. P., Heidelbach, F., Miyajima, N., & Frost, D. (2007). Texture development and TEM analysis of deformed CaIrO3: Implications for the D″ layer at the core‐mantle boundary. Geophysical Research Letters, 34(8), 1–5. https://doi.org/10.1029/2007GL029407

      193 Walte, N. P., Heidelbach, F., Miyajima, N., Frost, D. J., Rubie, D. C., & Dobson, D. P. (2009). Transformation textures in post‐perovskite: Understanding mantle flow in the D’ layer of the earth. Geophysical Research Letters, 36(4), 0–4. https://doi.org/10.1029/2008GL036840

      194 Wang, H., Wu, P. D., Tomé, C. N., & Huang, Y. (2010). A finite strain elastic‐viscoplastic self‐consistent model for polycrystalline materials. Journal of the Mechanics and Physics of Solids, 58(4), 594–612. https://doi.org/10.1016/j.jmps.2010.01.004

      195 Wang, Y., Guyot, F., Yeganeh‐Haeri, A., & Liebermann, R. C. (1990). Twinning in MgSiO3 perovskite. Science, 248(4954), 468–471. https://doi.org/10.1126/science.248.4954.468

      196  Wang, Y., Guyot, F., & Liebermann, R. C. (1992). Electron microscopy of (Mg, Fe)SiO 3 Perovskite: Evidence for structural phase transitions and implications for the lower mantle. Journal of Geophysical Research, 97(B9), 12327. https://doi.org/10.1029/92JB00870

      197 Wang, Y., Durham, W. B., Getting, I. C., & Weidner, D. J. (2003). The deformation‐DIA: A new apparatus for high temperature triaxial deformation to pressures up to 15 GPa. Review of Scientific Instruments, 74(6), 3002–3011. https://doi.org/10.1063/1.1570948

      198 Wang, Y., Hilairet, N., Nishiyama, СКАЧАТЬ