Название: Mantle Convection and Surface Expressions
Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Жанр: Физика
isbn: 9781119528593
isbn:
148 Nowacki, A., Walker, A. M., Wookey, J., & Kendall, J.‐M. (2013). Evaluating post‐perovskite as a cause of D′′ anisotropy in regions of palaeosubduction. Geophysical Journal International, 192(3), 1085–1090. https://doi.org/10.1093/gji/ggs068
149 Oganov, A. R., & Ono, S. (2004). Theoretical and experimental evidence for a post‐perovskite phase of MgSiO3 in Earth’s D″ layer. Nature, 430(6998), 445–448. https://doi.org/10.1038/nature02701
150 Oganov, A. R., Martoňák, R., Laio, A., Raiteri, P., & Parrinello, M. (2005). Anisotropy of earth’s D″ layer and stacking faults in the MgSiO3 post‐perovskite phase. Nature, 438(7071), 1142–1144. https://doi.org/10.1038/nature04439
151 Okada, T., Yagi, T., Niwa, K., & Kikegawa, T. (2010). Lattice‐preferred orientations in post‐perovskite‐type MgGeO3 formed by transformations from different pre‐phases. Physics of the Earth and Planetary Interiors, 180(3–4), 195–202. https://doi.org/10.1016/J.PEPI.2009.08.002
152 Van Orman, J. A., Fei, Y., Hauri, E. H., & Wang, J. (2003). Diffusion in MgO at high pressures: Constraints on deformation mechanisms and chemical transport at the core‐mantle boundary. Geophysical Research Letters, 30(2), 26–29. https://doi.org/10.1029/2002GL016343
153 Park, M., & Jung, H. (2017). Microstructural evolution of the Yugu peridotites in the Gyeonggi Massif, Korea: Implications for olivine fabric transition in mantle shear zones. Tectonophysics, 709, 55–68. https://doi.org/10.1016/J.TECTO.2017.04.017
154 Passchier, C. W. (Cees W., & Trouw, R. A. J. (Rudolph A. J. (2005). Microtectonics. Springer.
155 Paterson, M. S., & Weaver, C. W. (1970). Deformation of Polycrystalline Under Pressure. Journal of the American Ceramic Society, 53(8), 463–471.
156 Peierls, R. (1940). The size of a dislocation. Proceedings of the Physical Society, 52(1), 34–37. https://doi.org/10.1088/0959‐5309/52/1/305
157 Petitgirard, S., Daniel, I., Dabin, Y., Cardon, H., Tucoulou, R., & Susini, J. (2009). A diamond anvil cell for x‐ray fluorescence measurements of trace elements in fluids at high pressure and high temperature. Review of Scientific Instruments, 80(3), 033906. https://doi.org/10.1063/1.3100202
158 Piet, H., Badro, J., Nabiei, F., Dennenwaldt, T., Shim, S.‐H., Cantoni, M., et al. (2016). Spin and valence dependence of iron partitioning in Earth’s deep mantle. Proceedings of the National Academy of Sciences, 113(40), 11127–11130. https://doi.org/10.1073/PNAS.1605290113
159 Poirier, J.‐P. (1985). Creep of crystals : high‐temperature deformation processes in metals, ceramics, and minerals. Cambridge University Press.
160 Poudens, A., Bacroix, B., & Bretheau, T. (1995). Influence of microstructures and particle concentrations on the development of extrusion textures in metal matrix composites. Materials Science and Engineering: A, 196(1–2), 219–228. https://doi.org/10.1016/0921‐5093(94)09703‐8
161 Prakapenka, V. B., Kubo, A., Kuznetsov, A., Laskin, A., Shkurikhin, O., Dera, P., et al. (2008). Advanced flat top laser heating system for high pressure research at GSECARS: application to the melting behavior of germanium. High Pressure Research, 28(3), 225–235. https://doi.org/10.1080/08957950802050718
162 Raterron, P., Merkel, S., & III, C. W. H. (2013). Axial temperature gradient and stress measurements in the deformation‐DIA cell using alumina pistons. Review of Scientific Instruments, 84(4), 043906. https://doi.org/10.1063/1.4801956
163 Reali, R., Van Orman, J. A., Pigott, J. S., Jackson, J. M., Boioli, F., Carrez, P., & Cordier, P. (2019). The role of diffusion‐driven pure climb creep on the rheology of bridgmanite under lower mantle conditions. Scientific Reports, 9(1), 2053. https://doi.org/10.1038/s41598‐018‐38449‐8
164 Ricolleau, A., Perrillat, J.‐P., Fiquet, G., Daniel, I., Matas, J., Addad, A., et al. (2010). Phase relations and equation of state of a natural MORB: Implications for the density profile of subducted oceanic crust in the Earth’s lower mantle. Journal of Geophysical Research, 115(B8), B08202. https://doi.org/10.1029/2009JB006709
165 Rodi, F., & Babel, D. (1965). Ternare Oxide der Ubergangsmetalle. IV. Erdalkaliiridium(IV)‐oxide: Kristallstruktur von CalrO3. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 336(1–2), 17–23. https://doi.org/10.1002/zaac.19653360104
166 Romanowicz, B., & Wenk, H. R. (2017). Anisotropy in the deep Earth. Physics of the Earth and Planetary Interiors, 269(May), 58–90. https://doi.org/10.1016/j.pepi.2017.05.005
167 Rudolph, M. L., Lekić, V., & Lithgow‐Bertelloni, C. (2015). Viscosity jump in Earth’s mid‐mantle. Science (New York, N.Y.), 350(6266), 1349–52. https://doi.org/10.1126/science.aad1929
168 Samuel, H., & Tosi, N. (2012). The influence of post‐perovskite strength on the Earth’s mantle thermal and chemical evolution. Earth and Planetary Science Letters, 323–324, 50–59. https://doi.org/10.1016/J.EPSL.2012.01.024
169 Sato, F., & Sumino, K. (1980). The yield strength and dynamic behaviour of dislocations in MgO crystals at high temperatures. Journal of Materials Science, 15(7), 1625–1634. https://doi.org/10.1007/BF00550578
170 Shen, G., Rivers, M. L., Wang, Y., & Sutton, S. R. (2001). Laser heated diamond cell system at the advanced photon source for in situ x‐ray measurements at high pressure and temperature. Review of Scientific Instruments, 72(2), 1273–1282. https://doi.org/10.1063/1.1343867
171 Shieh, S. R., Duffy, T. S., & Shen, G. (2004). Elasticity and strength of calcium silicate perovskite at lower mantle pressures. Physics of the Earth and Planetary Interiors, 143(1–2), 93–105. https://doi.org/10.1016/j.pepi.2003.10.006
172 Shim, S.‐H., Jeanloz, R., & Duffy, T. S. (2002). Tetragonal structure of CaSiO3 perovskite above 20 GPa. Geophysical СКАЧАТЬ