Название: Mantle Convection and Surface Expressions
Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Жанр: Физика
isbn: 9781119528593
isbn:
46 Girard, J., Amulele, G., Farla, R., Mohiuddin, A., & Karato, S. (2016). Shear deformation of bridgmanite and magnesiowüstite aggregates at lower mantle conditions. Science (New York, N.Y.), 351(6269), 144–7. https://doi.org/10.1126/science.aad3113
47 Goryaeva, A. M., Carrez, P., & Cordier, P. (2015a). Modeling defects and plasticity in MgSiO3 post‐perovskite: Part 1—generalized stacking faults. Physics and Chemistry of Minerals, 42(10), 781–792. https://doi.org/10.1007/s00269‐015‐0762‐9
48 Goryaeva, A. M., Carrez, P., & Cordier, P. (2015b). Modeling defects and plasticity in MgSiO3 post‐perovskite: Part 2—screw and edge [100] dislocations. Physics and Chemistry of Minerals, 42(10), 793–803. https://doi.org/10.1007/s00269‐015‐0763‐8
49 Goryaeva, A. M., Carrez, P., & Cordier, P. (2016). Low viscosity and high attenuation in MgSiO3 post‐perovskite inferred from atomic‐scale calculations. Scientific Reports, 6(1), 34771. https://doi.org/10.1038/srep34771
50 Goryaeva, A. M., Carrez, P., & Cordier, P. (2017). Modeling defects and plasticity in MgSiO3 post‐perovskite: Part 3—Screw and edge [001] dislocations. Physics and Chemistry of Minerals, 44(7), 521–533. https://doi.org/10.1007/s00269‐017‐0879‐0
51 Gouriet, K., Carrez, P., & Cordier, P. (2014). Modelling [1 0 0] and [0 1 0] screw dislocations in MgSiO3 perovskite based on the Peierls–Nabarro–Galerkin model. Modelling and Simulation in Materials Science and Engineering, 22(2), 025020. https://doi.org/10.1088/0965‐0393/22/2/025020
52 Grocholski, B., Catalli, K., Shim, S.‐H., & Prakapenka, V. (2012). Mineralogical effects on the detectability of the postperovskite boundary. Proceedings of the National Academy of Sciences, 109(7), 2275–2279. https://doi.org/10.1073/pnas.1109204109
53 Handy, M. R. (1990). The solid‐state flow of polymineralic rocks. Journal of Geophysical Research, 95(B6), 8647. https://doi.org/10.1029/JB095iB06p08647
54 Handy, M. R. (1994). Flow laws for rocks containing two non‐linear viscous phases: A phenomenological approach. Journal of Structural Geology, 16(3), 287–301. https://doi.org/10.1016/0191‐8141(94)90035‐3
55 Heidelbach, F., Stretton, I., Langenhorst, F., & Mackwell, S. (2003). Fabric evolution during high shear strain deformation of magnesiowüstite (Mg0.8Fe0.2O). Journal of Geophysical Research: Solid Earth, 108(B3). https://doi.org/10.1029/2001JB001632
56 Hemley, R. J., Mao, H., Shen, G., Badro, J., Gillet, P., Hanfland, M., & Häusermann, D. (1997). X‐ray Imaging of Stress and Strain of Diamond, Iron, and Tungsten at Megabar Pressures. Science, 276(5316), 1242–1245. https://doi.org/10.1126/science.276.5316.1242
57 Herring, C. (1950). Diffusional Viscosity of a Polycrystalline Solid. Journal of Applied Physics, 21(5), 437–445. https://doi.org/10.1063/1.1699681
58 Hirel, P., Kraych, A., Carrez, P., & Cordier, P. (2014). Atomic core structure and mobility of [1 0 0](0 1 0) and [0 1 0](1 0 0) dislocations in MgSiO3 perovskite. Acta Materialia, 79, 117–125. https://doi.org/10.1016/j.actamat.2014.07.001
59 Hirose, K., Takafuji, N., Sata, N., & Ohishi, Y. (2005). Phase transition and density of subducted MORB crust in the lower mantle. Earth and Planetary Science Letters, 237(1–2), 239–251. https://doi.org/10.1016/j.epsl.2005.06.035
60 Hirose, K., Nagaya, Y., Merkel, S., & Ohishi, Y. (2010). Deformation of MnGeO3 post‐perovskite at lower mantle pressure and temperature. Geophysical Research Letters, 37(L20302). https://doi.org/10.1029/2010gl044977
61 Hirth, G., & Kohlstedt, D. (2003). Rheology of the upper mantle and the mantle wedge: A view from the experimentalists (pp. 83–105). American Geophysical Union (AGU). https://doi.org/10.1029/138GM06
62 Hulse, C. O., Copley, S. M., & Pask, J. A. (1963). Effect of Crystal Orientation on Plastic Deformation of Magnesium Oxide. Journal of the American Ceramic Society, 46(7), 317–323. https://doi.org/10.1111/j.1151‐2916.1963.tb11738.x
63 Hunt, S. A., & Dobson, D. P. (2017). Note: Modified anvil design for improved reliability in DT‐Cup experiments. Review of Scientific Instruments, 88(12), 126106. https://doi.org/10.1063/1.5005885
64 Hunt, S. A., Weidner, D. J., Li, L., Wang, L., Walte, N. P., Brodholt, J. P., & Dobson, D. P. (2009). Weakening of calcium iridate during its transformation from perovskite to post‐perovskite. Nature Geoscience, 2(11), 794–797. https://doi.org/10.1038/ngeo663
65 Hunt, S. A., Weidner, D. J., McCormack, R. J., Whitaker, M. L., Bailey, E., Li, L., et al. (2014). Deformation T‐Cup: A new multi‐anvil apparatus for controlled strain‐rate deformation experiments at pressures above 18 GPa. Review of Scientific Instruments, 85(8), 085103. https://doi.org/10.1063/1.4891338
66 Hunt, S. A., Walker, A. M., & Mariani, E. (2016). In‐situ measurement of texture development rate in CaIrO3 post‐perovskite. Physics of the Earth and Planetary Interiors, 257, 91–104. https://doi.org/10.1016/j.pepi.2016.05.007
67 Hunt, S. A., Fenech, D. M., Lord, O. T., Redfern, S. A. T., & Smith, J. S. (2018). Anelasticity of HCP‐Fe up to 70 GPa by overcoming X‐ray diffraction sampling limitations. In 2018 AGU Fall Meeting, Washington, D.C. (p. Abstract MR14A‐02).
68 Hustoft, J., Shim, S.‐H., Kubo, A., & Nishiyama, N. (2008). Raman spectroscopy of CaIrO3 postperovskite up to 30 GPa. American Mineralogist, 93(10), 1654–1658. https://doi.org/10.2138/am.2008.2938
69 Iitaka, T., Hirose, K., Kawamura, K., & Murakami, M. (2004). The elasticity of the {MgSiO_3} post‐perovskite phase in the lowermost mantle. Nature, 430(July), 442–445.
70 Immoor, J., Marquardt, H., Miyagi, L., Lin, F., Speziale, S., Merkel, S., et al. (2018). Evidence for {100}<011> slip in ferropericlase in Earth’s lower mantle from high‐pressure/high‐temperature experiments. Earth and Planetary Science Letters, 489, 251–257. https://doi.org/10.1016/j.epsl.2018.02.045
71 Jayaraman, СКАЧАТЬ