Название: Mantle Convection and Surface Expressions
Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Жанр: Физика
isbn: 9781119528593
isbn:
72 Jenei, Z., Liermann, H. P., Husband, R., Méndez, A. S. J., Pennicard, D., Marquardt, H., et al. (2019). New dynamic diamond anvil cells for tera‐pascal per second fast compression x‐ray diffraction experiments. Review of Scientific Instruments, 90(6), 065114. https://doi.org/10.1063/1.5098993
73 Jessell, M. W., Bons, P. D., Griera, A., Evans, L. A., & Wilson, C. J. L. (2009). A tale of two viscosities. Journal of Structural Geology, 31(7), 719–736. https://doi.org/10.1016/j.jsg.2009.04.010
74 Kaercher, P., Miyagi, L., Kanitpanyacharoen, W., Zepeda‐Alarcon, E., Wang, Y., Parkinson, D., et al. (2016). Two‐phase deformation of lower mantle mineral analogs. Earth and Planetary Science Letters, 456, 134–145. https://doi.org/10.1016/j.epsl.2016.09.030
75 Karato, S. I. (1998). Some remarks on the origin of seismic anisotropy in the D” layer. Earth, Planets and Space, 50(11–12), 1019–1028. https://doi.org/10.1186/BF03352196
76 Karato, S. I. (2009). Theory of lattice strain in a material undergoing plastic deformation: Basic formulation and applications to a cubic crystal. Physical Review B ‐ Condensed Matter and Materials Physics, 79(21), 214106. https://doi.org/10.1103/PhysRevB.79.214106
77 Karato, S. I. (2010). Rheology of the Earth’s mantle: A historical review. Gondwana Research, 18(1), 17–45. https://doi.org/10.1016/J.GR.2010.03.004
78 Karato, S. I., & Weidner, D. J. (2008). Laboratory Studies of Rheological Properties of Minerals Under Deep Mantle Conditions. Elements, 4, 191–196. https://doi.org/10.2113/GSELEMENTS.4.3.191
79 Karato, S. I., Zhang, S., & Wenk, H. R. (1995). Superplasticity in earth’s lower mantle: Evidence from seismic anisotropy and rock physics. Science, 270(5235), 458–461. https://doi.org/10.1126/science.270.5235.458
80 Karato, S. I., Jung, H., Katayama, I., & Skemer, P. (2007). Geodynamic Significance of Seismic Anisotropy of the Upper Mantle: New Insights from Laboratory Studies. Annual Review of Earth and Planetary Sciences, 36(1), 59–95. https://doi.org/10.1146/annurev.earth.36.031207.124120
81 Karki, B. B., & Crain, J. (1998). First‐principles determination of elastic properties of CaSiO 3 perovskite at lower mantle pressures Elastic Moduli and Anisotropy, 25(14), 2741–2744.
82 Kavner, A., & Duffy, T. S. (2001). Strength and elasticity of ringwoodite at upper mantle pressures. Geophysical Research Letters. https://doi.org/10.1029/2000GL012671
83 Kawazoe, T., Ohuchi, T., Nishiyama, N., Nishihara, Y., & Irifune, T. (2010). Preliminary deformation experiment of ringwoodite at 20 GPa and 1 700 K using a D‐DIA apparatus. Journal of Earth Science, 21(5), 517–522. https://doi.org/10.1007/s12583‐010‐0120‐2
84 Knipe, R.. (1989). Deformation mechanisms — recognition from natural tectonites. Journal of Structural Geology, 11(1–2), 127–146. https://doi.org/10.1016/0191‐8141(89)90039‐4
85 Kraych, A., Carrez, P., Hirel, P., Clouet, E., & Cordier, P. (2016). Peierls potential and kink‐pair mechanism in high‐pressure MgSiO3 perovskite: An atomic scale study. Physical Review B, 93(1), 1–9. https://doi.org/10.1103/PhysRevB.93.014103
86 Kubo, A., Kiefer, B., Shim, S.‐H., Shen, G., Prakapenka, V. B., & Duffy, T. S. (2008). Rietveld structure refinement of MgGeO3 post‐perovskite phase to 1 Mbar. American Mineralogist, 93(7), 965–976. https://doi.org/10.2138/am.2008.2691
87 Kunz, M., Caldwell, W. A., Miyagi, L., & Wenk, H. R. (2007). In situ laser heating and radial synchrotron x‐ray diffraction in a diamond anvil cell. Review of Scientific Instruments, 78(6). https://doi.org/10.1063/1.2749443
88 Kurnosov, A., Marquardt, H., Frost, D. J., Ballaran, T. B., & Ziberna, L. (2017). Evidence for a Fe3+‐rich pyrolitic lower mantle from (Al,Fe)‐bearing bridgmanite elasticity data. Nature, 543(7646), 543–546. https://doi.org/10.1038/nature21390
89 Lebensohn, R. A., & Tomé, C. N. (1993). A self‐consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: Application to zirconium alloys. Acta Metallurgica Et Materialia, 41(9), 2611–2624. https://doi.org/10.1016/0956‐7151(93)90130‐K
90 Li, C., van der Hilst, R. D., Engdahl, E. R., & Burdick, S. (2008). A new global model for P wave speed variations in Earth’s mantle. Geochemistry, Geophysics, Geosystems, 9(5), n/a‐n/a. https://doi.org/10.1029/2007GC001806
91 Li, L., & Weidner, D. J. (2015). In situ analysis of texture development from sinusoidal stress at high pressure and temperature. Review of Scientific Instruments, 86(12), 125106. https://doi.org/10.1063/1.4937398
92 Li, L., Weidner, D. J., Chen, J., Vaughan, M. T., Davis, M., & Durham, W. B. (2004). X‐ray strain analysis at high pressure: Effect of plastic deformation in MgO. Journal of Applied Physics, 95(12), 8357–8365. https://doi.org/10.1063/1.1738532
93 Liermann, H. P., Merkel, Ś., Miyagi, L., Wenk, H. R., Shen, G., Cynn, H., & Evans, W. J. (2009). Experimental method for in situ determination of material textures at simultaneous high pressure and high temperature by means of radial diffraction in the diamond anvil cell. Review of Scientific Instruments, 80(10), 1–8. https://doi.org/10.1063/1.3236365
94 Lin, F., Hilairet, N., Raterron, P., Addad, A., Immoor, J., Marquardt, H., et al. (2017). Elasto‐viscoplastic self consistent modeling of the ambient temperature plastic behavior of periclase deformed up to 5.4 GPa. Journal of Applied Physics, 122(20). https://doi.org/10.1063/1.4999951
95 Lin, J.‐F., Wenk, H.‐R., Voltolini, M., Speziale, S., Shu, J., & Duffy, T. S. (2009). Deformation of lower‐mantle ferropericlase (Mg,Fe)O across the electronic spin transition. Physics and Chemistry of Minerals, 36(10), 585–592. https://doi.org/10.1007/s00269‐009‐0303‐5
96 Long, M. D., & Becker, T. W. (2010). Mantle dynamics and seismic anisotropy. Earth and Planetary Science Letters, 297(3–4), 341–354. https://doi.org/10.1016/J.EPSL.2010.06.036
СКАЧАТЬ