Mantle Convection and Surface Expressions. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Mantle Convection and Surface Expressions - Группа авторов страница 48

Название: Mantle Convection and Surface Expressions

Автор: Группа авторов

Издательство: John Wiley & Sons Limited

Жанр: Физика

Серия:

isbn: 9781119528593

isbn:

СКАЧАТЬ by volume strain and can be approximated by an isotropic tensor with Eij = − ij where f = [(V0/V)2/3 − 1]/2. V0/V is the ratio of the volume V0 of the crystal at the reference state to the volume V in the compressed and hot state. In principle, the definition of the reference state is arbitrary. From an experimental point of view, it is convenient to define the reference state to be the state of the mineral at ambient pressure and temperature, i.e., P0 = 1 × 10–4 GPa and T0 = 298 K. Based on an expansion of the Helmholtz free energy F in finite strain, physical properties, including pressure and elastic stiffnesses, can be described as a function of volume and temperature (Birch, 1947; Davies, 1974; Thomsen, 1972a). Throughout this chapter, I will use the self‐consistent formalism presented by Stixrude and Lithgow‐Bertelloni (2005) that combines finite‐train theory with a quasi‐harmonic Debye model for thermal contributions to calculate pressure and elastic properties (Ita & Stixrude, 1992; Stixrude & Lithgow‐Bertelloni, 2005).

      For a truncation of the Helmholtz free energy after the fourth‐order term in finite strain, the components of the isentropic elastic stiffness tensor are given by (Davies, 1974; Stixrude & Lithgow‐Bertelloni, 2005):

equation equation equation equation equation equation equation

      where δijkl = −δijδklδilδjkδjlδik. The parameters of the cold part (lines 1–5) of this expression are the components of the isothermal elastic stiffness tensor cijkl0 at the reference state and their first and second pressure derivatives images and images, respectively. They combine to the isothermal bulk modulus K0 at the reference state as:

equation

      In an analogous way, the first and second pressure derivatives of the components of the elastic stiffness tensor combine to the first and second pressure derivatives of the bulk modulus images and images, respectively. The number of independent components of the elastic stiffness tensor depends on the crystal symmetry of the mineral and ranges from 21 for monoclinic (lowest) symmetry to 2 for an elastically isotropic material (Haussühl, 2007; Nye, 1985). Many mantle minerals, including olivine, wadsleyite, and bridgmanite, display orthorhombic crystal symmetry with 9 independent components of the elasticity tensors. For minerals with cubic crystal symmetry, such as ringwoodite, most garnets, and ferropericlase, the number of independent components is reduced to 3.

      The thermal contribution (lines 6–7) includes the changes in internal energy ΔTHU and in the product of isochoric heat capacity CV and temperature T, ΔTH(CVT ), that result from heating the mineral at constant volume V from the reference temperature T0 to the temperature T. The internal energy U is computed from a Debye model (Ita & Stixrude, 1992) based on an expansion of the Debye temperature θ in finite strain (Stixrude & Lithgow‐Bertelloni, 2005). The Grüneisen tensor is then defined as:

equation

      and the strain derivative of the Grüneisen tensor as:

equation

      The Grüneisen tensor and the tensor ηijkl are functions of finite strain themselves that are parameterized using their values at ambient conditions, i.e., γij0 and ηijkl0 (Stixrude & Lithgow‐Bertelloni, 2005).

      When combining the elastic properties of individual crystals to those of the aggregate, we further have to take into account that stresses and strains may not be distributed homogeneously throughout the aggregate as some crystals may behave stiffer and deform less than others. The effective stiffness of a crystal depends on the orientation of the crystal with respect to the imposed stress and strain fields. Crystals may also be clamped between neighboring grains and be forced into a strain state that may not correspond to a state of unconstrained mechanical equilibrium with the imposed external stress field. Approximations and bounds to the complex elastic behavior of crystalline aggregates have been reviewed by Watt et al. (1976). Here, I adopt the simplest bounding scheme based on the Voigt and Reuss bounds (Reuss, 1929; Voigt, 1928; Watt et al., 1976) and assume a random orientation of crystals.

      The Voigt bound is based on the assumption that the strain is homogeneous throughout the aggregate (Reuss, 1929; Watt et al., 1976). Regardless of its orientation, each crystal in the aggregate is deformed according to the external strain field imposed, for example, by a seismic wave. Because the resulting stresses are calculated from the strains using the elastic stiffnesses, we need to average the components of the elastic stiffness tensor cijkl over all orientations. For a monomineralic aggregate, this leads to the following expressions for the isotropic bulk modulus K and the isotropic shear modulus G (Hill, 1952; Watt et al., 1976):

equation equation equation equation

      The Reuss bound assumes that the imposed external stress field is homogeneous throughout the aggregate (Reuss, 1929; Watt et al., 1976). In this case, the strains are calculated from the stresses using the components of the elastic compliance tensor sijkl. The isotropic bulk and shear moduli of a monomineralic aggregate of randomly oriented crystals are then (Hill, 1952; Watt et al., 1976):

equation СКАЧАТЬ