Название: Mantle Convection and Surface Expressions
Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Жанр: Физика
isbn: 9781119528593
isbn:
199 Weertman, J. (1970). The creep strength of the Earth’s mantle. Reviews of Geophysics, 8(1), 145. https://doi.org/10.1029/RG008i001p00145
200 Weertman, Johannes, & Weertman, J. R. (1975). High Temperature Creep of Rock and Mantle Viscosity. Annual Review of Earth and Planetary Sciences, 3(1), 293–315. https://doi.org/10.1146/annurev.ea.03.050175.001453
201 Wenk, H.‐R., Canova, G., Bréchet, Y., & Flandin, L. (1997). A deformation‐based model for recrystallization of anisotropic materials. Acta Materialia, 45(8), 3283–3296. https://doi.org/10.1016/S1359‐6454(96)00409‐0
202 Wenk, H.‐R., Matthies, S., Hemley, R. J., Mao, H. K., & Shu, J. (2000). The plastic deformation of iron at pressures of the Earth’s inner core. Nature, 405(6790), 1044–1047. https://doi.org/10.1038/35016558
203 Wenk, H.‐R., Lonardeli, I., Pehl, J., Devine, J., Prakapenka, V., Shen, G., & Mao, H. K. (2004). In situ observation of texture development in olivine, ringwoodite, magnesiowüstite and silicate perovskite at high pressure. Earth and Planetary Science Letters, 226(3–4), 507–519. https://doi.org/10.1016/j.epsl.2004.07.033
204 Wenk, H.‐R., Lonardelli, I., Merkel, S., Miyagi, L., Pehl, J., Speziale, S., & Tommaseo, C. E. (2006). Deformation textures produced in diamond anvil experiments, analysed in radial diffraction geometry. Journal of Physics Condensed Matter, 18(25). https://doi.org/10.1088/0953‐8984/18/25/S02
205 Wenk, H.‐R., Speziale, S., McNamara, A. K., & Garnero, E. J. (2006). Modeling lower mantle anisotropy development in a subducting slab. Earth and Planetary Science Letters, 245(1–2), 302–314. https://doi.org/10.1016/j.epsl.2006.02.028
206 Wenk, H.‐R., Cottaar, S., Tomé, C. N., McNamara, A., & Romanowicz, B. (2011). Deformation in the lowermost mantle: From polycrystal plasticity to seismic anisotropy. Earth and Planetary Science Letters, 306(1–2), 33–45. https://doi.org/10.1016/J.EPSL.2011.03.021
207 Wenk, H.‐R., Lutterotti, L., Kaercher, P., Kanitpanyacharoen, W., Miyagi, L., & Vasin, R. (2014). Rietveld texture analysis from synchrotron diffraction images. II. Complex multiphase materials and diamond anvil cell experiments. Powder Diffraction, 29(3). https://doi.org/10.1017/S0885715614000360
208 Wookey, J., Kendall, J.‐M., & Barruol, G. (2002). Mid‐mantle deformation inferred from seismic anisotropy. Nature, 415(6873), 777–780. https://doi.org/10.1038/415777a
209 Wu, X., Lin, J. F., Kaercher, P., Mao, Z., Liu, J., Wenk, H. R., & Prakapenka, V. B. (2017). Seismic anisotropy of the D″ layer induced by (001) deformation of post‐perovskite. Nature Communications, 8, 1–6. https://doi.org/10.1038/ncomms14669
210 Xu, J., Yamazaki, D., Katsura, T., Wu, X., Remmert, P., Yurimoto, H., & Chakraborty, S. (2011). Silicon and magnesium diffusion in a single crystal of MgSiO 3 perovskite. Journal of Geophysical Research, 116(B12), B12205. https://doi.org/10.1029/2011JB008444
211 Xu, S. C., Wang, L. D., Zhao, P. T., Li, W. L., Xue, Z. W., & Fei, W. D. (2011). Evolution of texture during hot rolling of aluminum borate whisker‐reinforced 6061 aluminum alloy composite. Materials Science and Engineering: A, 528(7–8), 3243–3248. https://doi.org/10.1016/J.MSEA.2010.12.103
212 Xu, Y., Nishihara, Y., & Karato, S. (2005). Development of a rotational Drickamer apparatus for large‐strain deformation experiments at deep Earth conditions. Advances in High‐Pressure Technology for Geophysical Applications, 167–182. https://doi.org/10.1016/B978‐044451979‐5.50010‐7
213 Yamazaki, D., & Karato, S. I. (2001a). High‐pressure rotational deformation apparatus to 15 GPa. Review of Scientific Instruments, 72(11), 4207–4211. https://doi.org/10.1063/1.1412858
214 Yamazaki, D., & Karato, S. I. (2001b). Some mineral physics constraints on the rheology and geothermal structure of Earth’s lower mantle. American Mineralogist, 86(4), 385–391. https://doi.org/10.2138/am‐2001‐0401
215 Yamazaki, D., & Karato, S. I. (2002). Fabric development in (Mg,Fe)O during large strain, shear deformation: Implications for seismic anisotropy in Earth’s lower mantle. Physics of the Earth and Planetary Interiors, 131(3–4), 251–267. https://doi.org/10.1016/S0031‐9201(02)00037‐7
216 Yamazaki, D., Kato, T., Yurimoto, H., Ohtani, E., & Toriumi, M. (2000). Silicon self‐diffusion in MgSiO3 perovskite at 25 GPa. Physics of the Earth and Planetary Interiors, 119(3–4), 299–309. https://doi.org/10.1016/S0031‐9201(00)00135‐7
217 Yamazaki, D., Yoshino, T., Ohfuji, H., Ando, J. ichi, & Yoneda, A. (2006). Origin of seismic anisotropy in the D″ layer inferred from shear deformation experiments on post‐perovskite phase. Earth and Planetary Science Letters, 252(3–4), 372–378. https://doi.org/10.1016/j.epsl.2006.10.004
218 Yoshizawa, Y., Toriyama, M., & Kanzaki, S. (2004). Fabrication of Textured Alumina by High‐Temperature Deformation. Journal of the American Ceramic Society, 84(6), 1392–1394. https://doi.org/10.1111/j.1151‐2916.2001.tb00848.x
219 Zhang, W. L., Gu, M. Y., Wang, D. Z., & Yao, Z. K. (2004). Rolling and annealing textures of a SiCw/Al composite. Materials Letters, 58(27–28), 3414–3418. https://doi.org/10.1016/J.MATLET.2004.05.065
3 Seismic Wave Velocities in Earth’s Mantle from Mineral Elasticity
Johannes Buchen
Seismological Laboratory, California Institute of Technology, Pasadena, CA, USA
ABSTRACT
The propagation of seismic waves through Earth’s mantle is controlled by the elastic properties of the minerals that form mantle rocks. Changes in pressure, temperature, and chemical composition of the mantle as well as phase transitions affect seismic wave speeds through their impact on mineral elasticity. СКАЧАТЬ