Название: Manual de preparación PSU Matemática
Автор: Varios autores
Издательство: Bookwire
Жанр: Учебная литература
isbn: 9789561426771
isbn:
En todo número complejo z = a + bi se distinguen dos partes: la parte real de z simbolizada por Re(z) = a, y la parte imaginaria de z simbolizada por Im(z) = b.
• Números reales: números complejos de la forma z = a + 0i, es decir, Im(z) = 0.
• Números imaginarios: números complejos de la forma z = 0 + bi, es decir, Re(z) = 0.
Dos números complejos z1 y z2 son iguales si sus partes real e imaginaria son respectivamente iguales. Es decir:
z1 = z2 ⇔ Re(z1) = Re(z2) e Im(z1) = Im(z2)
Entre los conjuntos numéricos estudiados, se tiene lo siguiente:
Representado en un diagrama, se tiene:
Actividades resueltas
1. Determina la parte real e imaginaria de cada número complejo.
2. Si z1 = (12x – 6) + 8i, z2 = 18 + (5 – y)i, ¿cuáles son los valores de x e y para que z1 = z2?
Se debe cumplir Re(z1) = Re(z2) e Im(z1) = Im(z2), es decir:
• 12x – 6 = 18 ⇒ x = 2
• 8 = 5 – y ⇒ y = –3
Remplazando estos valores se tiene: z1 = z2 = 18 + 8i.
Actividades
1. Escribe
2. Determina la parte real y la parte imaginaria de cada número.
3. Escribe cada número en la forma z = a + bi según las condiciones dadas.
4. Escribe un número complejo que cumpla con la condición solicitada.
a) La parte real sea el doble de la parte imaginaria.
b) La parte imaginaria sea negativa y la parte real sea un número mayor que –5 y menor que cero.
c) Su parte real sea cero y su parte imaginaria sea un número par primo.
d) Su parte imaginaria sea cero y su parte real 7.
e) La parte real sea menor que 3 y mayor que 1 y la parte imaginaria sea un número negativo.
f) La parte real sea un múltiplo de 5 y la parte imaginaria sea divisor de 8.
5. Resuelve.
a) Si z = x + (16 + y)i, w =
b) Si z1 = (5a + 12) + 7i, z2 = 17 – bi, ¿cuáles son los valores de a y b para que z1 = z2?
c) Si z = (x + 2y) + (5 + 7y)i, w =
d) Si z1 = z2 y z1 = 3 – (5 + y)i, z2 = (4 – 2x) + (7 – 5y)i, ¿cuáles son los valores de x e y?
e) Si z = 3x + (5y – 4)i, w = 15 – 8yi, para que z = w, ¿cuánto es x + y?
6. Determina los valores de p y q para que se cumpla cada igualdad.
4.3 Representación gráfica de números complejos
En el plano cartesiano se utilizan los ejes X e Y, que representan los números reales. Es posible construir el plano complejo, que se conoce como plano de Argand, identificando el eje Y con las partes imaginarias (Im(z)) y el eje X con las partes reales (Re(z)). De esta manera, es posible representar un número complejo cualquiera como un punto en este plano identificando su parte real en el eje X, y su parte imaginaria en el eje Y.
Un número complejo z se puede representar en:
• Forma binomial: z = a + bi
• Forma cartesiana: z = (a, b)
Se СКАЧАТЬ