Название: Didaktik und Neurowissenschaften
Автор: Michaela Sambanis
Издательство: Bookwire
Жанр: Документальная литература
Серия: narr studienbücher
isbn: 9783823300663
isbn:
Der gesamte Vorgang lässt sich am einfachsten an einem Beispiel erklären: Angenommen, eine NervenzelleNervenzellen im primären visuellenvisuell CortexCortex, also in der Sehrinde, erhält über den ThalamusThalamus ein Eingangssignal von einer Sinneszelle des Auges. Sie reagiert beispielsweise auf rotes Licht. Auf ein einzelnes Eingangssignal reagiert unsere Nervenzelle zunächst noch nicht.4 Wenn aber gleichzeitig oder auch kurz nacheinander mehrere Impulse eintreffen, ist das ein Hinweis darauf, dass „da draußen etwas ist“. Unser NeuronNeuronen erzeugt daraufhin selbst einen elektrischen Impuls, den es als Signal „rotes Licht gesehen“ über das AxonAxone an andere, nachgeschaltete Nervenzellen weiterschickt.
Der NervenzelleNervenzellen ist, bildlich gesprochen, natürlich nicht bewusst, dass sie gewissermaßen eine Entscheidung gefällt hat. Vielmehr haben die Eingangssignale dazu geführt, dass ein AktionspotentialAktionspotential gebildet wurde, das über das AxonAxone der Nervenzelle u.a. an die benachbarten Neurone weitergeleitet wird (vgl. Infobox 2.1). Dieses Aktionspotential ist ein Signal für die benachbarten Neurone, die möglicherweise ebenfalls auf rotes Licht reagieren. Auf diese Weise bestätigen benachbarte Zellen sich gegenseitig, dass sie dieselbe Information erhalten haben. Ein solcher Abgleich ist nützlich, wenn man in seiner Wahrnehmung sicherer, schneller und genauer werden will. Da die Verbindungen wechselseitig sind, hat die Nervenzelle nicht nur die Information bestätigt, sondern auch eine Bestätigung für ihr Signal erhalten. Außerdem wird das Signal an Nervenzellen im nachgeschalteten Hirngebiet geschickt. Dabei erhalten die nachgeschalteten Nervenzellen nicht nur Impulse von der einen Nervenzelle, sondern auch von weiteren. So kann man sich vorstellen, dass einige der nachgeschalteten Nervenzellen nicht nur die Information „rot“ sondern auch noch die Informationen „rund“ und „ungefähr 8–12 cm groß“ erhalten. Diese würden dann bevorzugt auf rote Äpfel aber auch auf kleine rote Bälle reagieren. Diese Zellen geben nun die Information „kleines, rotes, rundes Objekt“ wiederum an andere Hirngebiete weiter, die vielleicht zusätzliche Informationen über den kleinen braunen Stiel des Apfels oder den braunen Blütenrest erhalten (unimodale Assoziationsarealeunimodale Assoziationsareale) oder gar Informationen zum Geruch, der Glattheit einer typischen Apfelschale oder zum Geschmack (multimodale Assoziationsarealemultimodale Assoziationsareale). Zusätzlich geben die Neurone aber auch Signale an die vorgeschalteten Hirngebiete zurück. Das Gehirn ist keine „Einbahnstraße“, sondern Informationen laufen in der Regel in beide Richtungen.
2.2 Woher wissen eigentlich die Cortexgebiete, was ihre Aufgabe ist?
Mit der Ausbildung der größtmöglichen Anzahl an Verbindungen zwischen den NervenzellenNervenzellen ist ein Gehirngebiet aber noch längst nicht fertig mit seiner Entwicklung. Das Gehirn funktioniert nämlich nicht dann am besten, wenn möglichst viele Verbindungen bestehen, sondern dann, wenn die richtigen Verbindungen gut und stark ausgeprägt sind. Daher folgt der Phase der Synapsenentstehung, der SynaptogeneseSynaptogenese, ein weiterer Schritt, bei dem etwa 40 % der SynapsenSynapse wieder abgebaut werden: das sogenannte PruningPruning. Das klingt zunächst einmal wenig sinnvoll, hat aber durchaus Relevanz und Vorteile (vgl. Casey, Giedd & Thomas 2000). Es ist ein bisschen so wie bei einem Gärtner, der zunächst einmal sehr viele Samen ausbringt und schaut, wie sich die Pflänzchen entwickeln. Die Kräftigsten werden dann von der Anzuchtschale in Blumentöpfe gesetzt, weiter gepflegt und als besonders schöne und üppige Pflanzen gewinnbringend verkauft (vgl. Infobox 2.3).
Wer aber ist im Gehirn der Gärtner, der die Auswahl trifft? Wie wird dort gewählt? Bestehen bleiben diejenigen Verbindungen, die häufig genutzt werden. SynapsenSynapse, über die viel Information läuft, und Verbindungen zwischen NeuronenNeuronen, die gleichzeitig aktiv sind, werden immer größer und stärker (vgl. Infobox 2.1). Diejenigen Synapsen, die wenig genutzt werden, also auch wenig zur Kommunikation zwischen NervenzellenNervenzellen beitragen, verkümmern und sterben ab. In letzter Konsequenz bedeutet das, dass die Synapsen bestehen bleiben, die das repräsentieren, was der sich entwickelnde Mensch erlebt, wahrnimmt und tut. Auf diese Weise tragen das entstehende Übermaß an Verbindungen und der anschließende Abbau zu LernprozessenLernprozesse bei, bei denen die „überlebenden“ Synapsen die gemachten Erfahrungen und gelernten Inhalte repräsentieren. Diese hohe Formbarkeit – die Hirnforscher nennen sie PlastizitätPlastizität – ermöglicht enorme LernleistungenLernleistung. Daher erscheint es oft so, als würde das kindliche Gehirn sozusagen wie ein Schwamm alles aufsaugen, was es an Informationen bekommen kann.
Und in gewisser Weise stimmt dies auch. Relevant ist die tatsächliche Erfahrung. Das Maß dafür, ob etwas behalten wird, ist, wie häufig es erlebt wird sowie die emotionale Wirkung des Erlebten (vgl. Kap. 4 & 6). Eine Bewertung der Inhalte, etwa hinsichtlich ihres Wahrheitsgehaltes oder der Vertrauenswürdigkeit einer Informationsquelle, ist jungen Kindern dagegen noch nicht möglich.
Der anfängliche ÜberschussÜberschuss an synaptischen Verbindungen zwischen NeuronenNeuronen ermöglicht hohe LernleistungenLernleistung. Aber das Übermaß an Verbindungen hat auch direkte Nachteile. So führt der anfängliche Überschuss an SynapsenSynapse zunächst zu einer ungenauen Abbildung der Sinnesinformationen im Gehirn. Dadurch wird die Exaktheit der Wahrnehmung stark beeinträchtigt. Da zudem auch ein Überschuss an Verbindungen zwischen den Hirngebieten und von den Sinnesorganen zum CortexCortex entsteht, kommt es dazu, dass Informationen, die etwa vom Ohr kommen, nicht nur im Hörsystem landen und dort verarbeitet werden, sondern zusätzlich z.B. im SehsystemSehsystem, sodass sie dort u.U. Farb- oder Formeindrücke hervorrufen können, oder auch umgekehrt, dass visuellevisuell Informationen im auditorischenauditorisch Cortex ankommen und dort als Geräusche wahrgenommen werden (vgl. Siegler, Eisenberg et al. 2016). Dies ist nur in Ausnahmefällen von sofort einleuchtendem Nutzen, nämlich wenn eines der Sinnessysteme ausfällt. Wenn etwa aufgrund einer angeborenen Blindheit oder Gehörlosigkeit ein Gehirngebiet nicht die erwarteten Informationen erhält, oftmals nicht einmal die Verbindungen vom Sinnesorgan zum Gehirn hin aufgebaut werden, dann kann das Gehirngebiet die eigentlich aufgrund überzähliger Verbindungen eintreffenden Signale eines anderen Sinnesorgans verarbeiten und so zu einer besseren Wahrnehmungsfähigkeit in den noch verbleibenden Sinnen beitragen.
Wir haben es also mit einer Mischung aus Vor- und Nachteilen zu tun, aus der ein biologischer Nutzen des ÜberschussesÜberschuss an SynapsenSynapse nicht sofort sichtbar wird. Aus Biologensicht ist diese Art des Hirnwachstums sogar ein riskantes Unterfangen. Immerhin benötigen Kinder während der Entwicklung für die Versorgung ihres Gehirns etwa 1,5-mal so viel EnergieEnergie wie Erwachsene – trotz des geringeren Körper- und Gehirngewichts. Am höchsten ist der Energieverbrauch des Gehirns im Alter von 4 bis 5 Jahren. Zu der Zeit werden 43 % der insgesamt aufgenommenen Energiemenge vom Gehirn verbraucht (vgl. Kuzawa, Chugani et al. 2014). Das ist, biologisch betrachtet, ein hohes Risiko. Schließlich ist in der Natur die Versorgung mit Nahrung nicht immer gesichert. Welche Konsequenzen Mangelernährung für die Hirnentwicklung hat, kann man leider immer noch, besonders in anderen Teilen der Welt, beobachten. Angesichts dessen muss es einen guten Grund für den luxuriösen Wachstumsüberschuss im Gehirn des Säuglings geben.
Aktuelle Theorien gehen davon aus, dass der eigentliche Grund für dieses Wachstumsmuster СКАЧАТЬ