Space Physics and Aeronomy, Ionosphere Dynamics and Applications. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Space Physics and Aeronomy, Ionosphere Dynamics and Applications - Группа авторов страница 37

СКАЧАТЬ system. Further details can be found in the reviews cited in the introduction. There are features and processes that have not been covered in this review, but which are discussed in other chapters of this monograph. The energy input to the high‐latitude ionosphere through the electrodynamics discussed here is described in Chapter 1; large‐ and small‐scale polar cap and midlatitude dynamics during substorms and geomagnetic storms are covered in Chapters 3, 7, and 15; the ionospheric plasma structure produced by convection is the topic of Chapter 4. In addition, processes described in this review, including ionospheric heating, can produce significant outflow of ions from the ionosphere into the magnetosphere, with implications for subsequent magnetospheric dynamics, as discussed in Chapter 5. Another feature that has been neglected in this review is the formation of rapid westward convection flows in the duskside subauroral ionosphere, known as subauroral polarization streams (SAPS) and associated with the inner magnetosphere plasma dynamics; this is covered in detail in Chapter 6. Finally, we have not discussed the role of interhemispheric asymmetries associated with dipole tilt, seasonal variations in ionospheric illumination, and the influence of the BX component of the IMF, and these are described in Chapter 8.

      SEM was supported by STFC grant ST/N000749/1. AG was supported by NERC grant NE/P001556/1 and STFC grant ST/R000816/1.

      1 Acuña, M. H., Ogilvie, K. W., Baker, D. N., Curtis, S. A., Fairfield, D. H., & Mish, W. H. (1997). The Global Geospace Science Program and its investigations. Space Science Reviews, 71, 5. doi:10.1007/BF00751323

      2 Akasofu, S.‐I. (1964). The development of the auroral substorm. Planetary and Space Science, 12, 273–282. doi: 10.1016/0032‐0633(64)90151‐5

      3 Alfvén, H. (1942). Existence of electromagnetic‐hydrodynamic waves. Nature, 150, 405. doi: 10.1038/150405d0

      4 Atkinson, G. (1967a). An approximate flow equation for geomagnetic flux tubes and its application to polar substorms. Journal of Geophysical Research, 72, 5373–5382.

      5 Atkinson, G. (1967b). Polar magnetic substorms. Journal of Geophysical Research, 72, 1491–1494. doi: 10.1029/JZ072i005p01491

      6 Axford, W. I., & Hines, C. O. (1961). A unifying theory of high‐latitude geophysical phenomena and geomagnetic storms. Canadian Journal of Physics, 39, 1433–1464.

      7 Baker, K. B., Rodger, A. S., & Lu, G. (1997). HF‐radar observations of the dayside magnetic merging rate: a geospace environment modeling boundary layer campaign study. Journal of Geophysical Research, 102, 9603–9617.

      8 Baumjohann, W., Blanc, M., Fedorov, A., & Glassmeier, K.‐H. (2010). Current systems in planetary magnetospheres and ionospheres. Space Science Reviews. 152, 99–134. doi: 10.1007/s11214‐010‐9629‐z

      9 Birkeland, K. (1908). The Norwegian Aurora Polaris Expedition 1902–1903, vol. 1. New York and Christiania: H. Aschehoug.

      10 Borovsky, J. E., Lavraud, B., & Kuznetsova, M. M. (2009). Polar cap potential saturation, dayside reconnection, and changes to the magnetosphere. Journal of Geophysical Research, 114, A03224. doi:10.1029/2009JA014058

      11 Bristow, W. A., Otto, A., & Lummerzheim, D. (2001). Substorm convection patterns observed by the super dual auroral radar network. Journal of Geophysical Research, 106, 24,593–24,609.

      12 Bristow, W. A., Sofko, G. J., Stenbaek‐Nielsen, H. C., Wei, S., Lummerzheim, D., & Otto, A. (2003). Detailed analysis of substorm observations using SuperDARN, UVI, ground‐based magnetometers, and all‐sky imagers. Journal of Geophysical Research, 108, 1124. doi:10.1029/2002JA009242

      13 Browett, S. D., Fear, R. C., Grocott, A., & Milan, S. E. (2017). Timescales for the penetration of IMF By into the Earth's magnetotail. Journal of Geophysical Research Space Physics, 122, 579–593. doi: 10.1002/2016JA023198

      14 Burch, J. L. (2000). Image Mission overview. In J. L. Burch (Ed.), The Image Mission. Dordrecht: Springer. doi:10.1007/978‐94‐011‐4233‐5_1

      15 Chapman, S. (1931). The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating Earth. Proceedings of the Physical Society, 43, 26.

      16 Chapman, S., & Ferraro, V. C. A. (1931). A new theory of magnetic storms. Terrestrial Magnetism and Atmospheric Electricity, 36, 77–97. doi:10.1029/TE036i002p00077

      17 Chisham, G., et al. (2007). A decade of the Super Dual Auroral Radar Network (SuperDARN): Scientific achievements, new techniques and future directions. Surveys in Geophysics, 28, 33–109. doi:10.1007/s10712‐007‐9017‐8

      18 Chisham, G., et al. (2008). Remote sensing of the spatial and temporal structure of magnetopause and magnetotail reconnection from the ionosphere. Reviews of Geophysics, 46, RG1004. doi:10.1029/2007RG000223

      19 Chisham, G., Freeman, M. P., Abel, G. A., Bristow, W. A., Marchaudon, A., Ruohoniemi, J. M., & Sofko, G. J. (2009). Spatial distribution of average vorticity in the high‐latitude ionosphere and its variation with interplanetary magnetic field direction and season. Journal of Geophysical Research, 114, A09301. doi:10.1029/2009JA014263

      20 Clausen, L. B. N., Baker, J. B. H., Ruohoniemi, J. M., Milan, S. E., & Anderson, B. J. (2012). Dynamics of the region 1 Birkeland current oval derived from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE). Journal of Geophysical Research, 117, A06233. doi:10.1029/2012JA017666.

      21 Cowley, S. W. H. (1981a). Magnetospheric and ionospheric flow and the interplanetary magnetic field. In The physical basis of the ionosphere in the solar‐terrestrial system (pp. 4‐1–4‐14). AGARD‐CP‐295.

      22 Cowley, S. W. H. (1981b). Magnetospheric asymmetries associated with the Y‐component of the IMF. Planetary and Space Science, 29, 79–96.

      23 Cowley, S. W. H. (2000). Magnetosphere‐ionosphere interactions: A tutorial review. In S. Ohtani et al. (Eds.), Magnetospheric current systems (pp. 91–106). Geophysical Monograph Series, vol. 118. Washington, DC: AGU. doi:10.1029/GM118p0091

      24 Cowley, S. W. H. (2015). Dungey's Reconnection Model of the Earth's Magnetosphere: The first 40 years. In D. Southwood et al. (Eds.), Magnetospheric plasma physics: The impact of Jim Dungey's research. Astrophysics and Space Science Proceedings, 41, Springer. doi: 10.1007/978‐3‐319‐18359‐6_1

      25 Cowley, S. W. H., & Lockwood, M. (1992). Excitation and decay of solar wind‐driven flows in the magnetosphere‐ionosphere system. Annals of Geophysics, 10, 103–115.

      26 Cowley, S. W. H., Morelli, J. P., & Lockwood, M. (1991). Dependence of convective flows and particle precipitation in the high‐latitude dayside ionosphere on the X and Y components of the interplanetary magnetic field. Journal of Geophysical Research, 96, 5557–5564.

      27 Coxon, J. C., Milan, S. E., Korth, H., & Anderson, B. J. (2018). Ampère's Law: A review of Birkeland current СКАЧАТЬ