Название: Space Physics and Aeronomy, Ionosphere Dynamics and Applications
Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Жанр: Физика
isbn: 9781119815532
isbn:
ACKNOWLEDGMENTS
SEM was supported by STFC grant ST/N000749/1. AG was supported by NERC grant NE/P001556/1 and STFC grant ST/R000816/1.
REFERENCES
1 Acuña, M. H., Ogilvie, K. W., Baker, D. N., Curtis, S. A., Fairfield, D. H., & Mish, W. H. (1997). The Global Geospace Science Program and its investigations. Space Science Reviews, 71, 5. doi:10.1007/BF00751323
2 Akasofu, S.‐I. (1964). The development of the auroral substorm. Planetary and Space Science, 12, 273–282. doi: 10.1016/0032‐0633(64)90151‐5
3 Alfvén, H. (1942). Existence of electromagnetic‐hydrodynamic waves. Nature, 150, 405. doi: 10.1038/150405d0
4 Atkinson, G. (1967a). An approximate flow equation for geomagnetic flux tubes and its application to polar substorms. Journal of Geophysical Research, 72, 5373–5382.
5 Atkinson, G. (1967b). Polar magnetic substorms. Journal of Geophysical Research, 72, 1491–1494. doi: 10.1029/JZ072i005p01491
6 Axford, W. I., & Hines, C. O. (1961). A unifying theory of high‐latitude geophysical phenomena and geomagnetic storms. Canadian Journal of Physics, 39, 1433–1464.
7 Baker, K. B., Rodger, A. S., & Lu, G. (1997). HF‐radar observations of the dayside magnetic merging rate: a geospace environment modeling boundary layer campaign study. Journal of Geophysical Research, 102, 9603–9617.
8 Baumjohann, W., Blanc, M., Fedorov, A., & Glassmeier, K.‐H. (2010). Current systems in planetary magnetospheres and ionospheres. Space Science Reviews. 152, 99–134. doi: 10.1007/s11214‐010‐9629‐z
9 Birkeland, K. (1908). The Norwegian Aurora Polaris Expedition 1902–1903, vol. 1. New York and Christiania: H. Aschehoug.
10 Borovsky, J. E., Lavraud, B., & Kuznetsova, M. M. (2009). Polar cap potential saturation, dayside reconnection, and changes to the magnetosphere. Journal of Geophysical Research, 114, A03224. doi:10.1029/2009JA014058
11 Bristow, W. A., Otto, A., & Lummerzheim, D. (2001). Substorm convection patterns observed by the super dual auroral radar network. Journal of Geophysical Research, 106, 24,593–24,609.
12 Bristow, W. A., Sofko, G. J., Stenbaek‐Nielsen, H. C., Wei, S., Lummerzheim, D., & Otto, A. (2003). Detailed analysis of substorm observations using SuperDARN, UVI, ground‐based magnetometers, and all‐sky imagers. Journal of Geophysical Research, 108, 1124. doi:10.1029/2002JA009242
13 Browett, S. D., Fear, R. C., Grocott, A., & Milan, S. E. (2017). Timescales for the penetration of IMF By into the Earth's magnetotail. Journal of Geophysical Research Space Physics, 122, 579–593. doi: 10.1002/2016JA023198
14 Burch, J. L. (2000). Image Mission overview. In J. L. Burch (Ed.), The Image Mission. Dordrecht: Springer. doi:10.1007/978‐94‐011‐4233‐5_1
15 Chapman, S. (1931). The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating Earth. Proceedings of the Physical Society, 43, 26.
16 Chapman, S., & Ferraro, V. C. A. (1931). A new theory of magnetic storms. Terrestrial Magnetism and Atmospheric Electricity, 36, 77–97. doi:10.1029/TE036i002p00077
17 Chisham, G., et al. (2007). A decade of the Super Dual Auroral Radar Network (SuperDARN): Scientific achievements, new techniques and future directions. Surveys in Geophysics, 28, 33–109. doi:10.1007/s10712‐007‐9017‐8
18 Chisham, G., et al. (2008). Remote sensing of the spatial and temporal structure of magnetopause and magnetotail reconnection from the ionosphere. Reviews of Geophysics, 46, RG1004. doi:10.1029/2007RG000223
19 Chisham, G., Freeman, M. P., Abel, G. A., Bristow, W. A., Marchaudon, A., Ruohoniemi, J. M., & Sofko, G. J. (2009). Spatial distribution of average vorticity in the high‐latitude ionosphere and its variation with interplanetary magnetic field direction and season. Journal of Geophysical Research, 114, A09301. doi:10.1029/2009JA014263
20 Clausen, L. B. N., Baker, J. B. H., Ruohoniemi, J. M., Milan, S. E., & Anderson, B. J. (2012). Dynamics of the region 1 Birkeland current oval derived from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE). Journal of Geophysical Research, 117, A06233. doi:10.1029/2012JA017666.
21 Cowley, S. W. H. (1981a). Magnetospheric and ionospheric flow and the interplanetary magnetic field. In The physical basis of the ionosphere in the solar‐terrestrial system (pp. 4‐1–4‐14). AGARD‐CP‐295.
22 Cowley, S. W. H. (1981b). Magnetospheric asymmetries associated with the Y‐component of the IMF. Planetary and Space Science, 29, 79–96.
23 Cowley, S. W. H. (2000). Magnetosphere‐ionosphere interactions: A tutorial review. In S. Ohtani et al. (Eds.), Magnetospheric current systems (pp. 91–106). Geophysical Monograph Series, vol. 118. Washington, DC: AGU. doi:10.1029/GM118p0091
24 Cowley, S. W. H. (2015). Dungey's Reconnection Model of the Earth's Magnetosphere: The first 40 years. In D. Southwood et al. (Eds.), Magnetospheric plasma physics: The impact of Jim Dungey's research. Astrophysics and Space Science Proceedings, 41, Springer. doi: 10.1007/978‐3‐319‐18359‐6_1
25 Cowley, S. W. H., & Lockwood, M. (1992). Excitation and decay of solar wind‐driven flows in the magnetosphere‐ionosphere system. Annals of Geophysics, 10, 103–115.
26 Cowley, S. W. H., Morelli, J. P., & Lockwood, M. (1991). Dependence of convective flows and particle precipitation in the high‐latitude dayside ionosphere on the X and Y components of the interplanetary magnetic field. Journal of Geophysical Research, 96, 5557–5564.
27 Coxon, J. C., Milan, S. E., Korth, H., & Anderson, B. J. (2018). Ampère's Law: A review of Birkeland current СКАЧАТЬ