Space Physics and Aeronomy, Ionosphere Dynamics and Applications. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Space Physics and Aeronomy, Ionosphere Dynamics and Applications - Группа авторов страница 40

СКАЧАТЬ Physics, 118. doi:10.1002/jgra.50393

      99 Milan, S. E. (2015). Sun et Lumière: Solar wind‐magnetosphere coupling as deduced from ionospheric flows and polar auroras. In D. Southwood et al. (Eds.), Magnetospheric plasma physics: The impact of Jim Dungey's research. Astrophysics and Space Science Proceedings 41, Springer. doi: 10.1007/978‐3‐319‐18359‐6_2, 2015

      100 Milan, S. E., Carter, J. A., Sangha, H., Laundal, K., Østgaard, N., Tenfjord, P., Reistad, J., et al. (2018a). Timescales of dayside and nightside field‐aligned current response to changes in solar wind‐magnetosphere coupling. Journal of Geophysical Research Space Physics, 123, in press.

      101 Milan, S. E., Clausen, L. B. N., Coxon, J. C., Carter, J. A., Walach, M.‐T., Laundal, K., Østgaard, N., et al. (2017). Overview of solar wind‐magnetosphere‐ionosphere‐atmosphere coupling and the generation of magnetospheric currents. Space Science Reviews, 206. doi: 10.1007/s11214‐017‐0333‐0

      102 Milan, S. E., Gosling, J. S., & Hubert, B. (2012). Relationship between interplanetary parameters and the magnetopause reconnection rate quantified from observations of the expanding polar cap. Journal of Geophysical Research, 117, A03226. doi:10.1029/2011JA017082

      103 Milan, S. E., Grocott, A., Forsyth, C., Imber, S. M., Boakes, P. D., & Hubert, B. (2009). A superposed epoch analysis of auroral evolution during substorm growth, onset and recovery: Open magnetic flux control of substorm intensity. Annals of Geophysics, 27, 659–668.

      104 Milan, S. E., Both solar wind-magnetosphere coupling and ring current intensity control of the size of the auroral oval, Geophys. Res. Lett., 36, L18101, doi: 10.1029/ 2009GL039997, 2009.

      105 Milan, S. E., Hubert, B., & Grocott, A. (2005). Formation and motion of a transpolar arc in response to dayside and nightside reconnection. Journal of Geophysical Research, 110, A01212. doi:10.1029/2004JA010835

      106 Milan, S. E., Imber, S. M., Carter, J. A., Walach, M.‐T., & Hubertv, B. (2016). What controls the local time extent of flux transfer events? Journal of Geophysical Research Space Physics, 121. doi: 10.1002/2015JA022012

      107 Milan, S. E., Lester, M., Cowley, S. W. H., & Brittnacher, M. (2000a). Convection and auroral response to a southward turning of the IMF: Polar UVI, CUTLASS, and IMAGE signatures of transient magnetic flux transfer at the magnetopause. Journal of Geophysical Research, 105, 15,741–15,755.

      108 Milan, S. E., Lester, M., Cowley, S. W. H., & Brittnacher, M. (2000b). Dayside convection and auroral morphology during an interval of northward interplanetary magnetic field. Annals of Geophysics, 18, 436–444.

      109 Milan, S. E., Lester, M., Cowley, S. W. H., Oksavik, K., Brittnacher, M., Greenwald, R. A., Sofko, G. et al. (2003). Variations in polar cap area during two substorm cycles. Annals of Geophysics, 21, 1121–1140.

      110 Milan, S. E., Provan, G., & Hubert, B. (2007). Magnetic flux transport in the Dungey cycle: A survey of dayside and nightside reconnection rates. Journal of Geophysical Research, 112, A01209. doi:10.1029/2006JA011642

      111 Milan, S. E., Walach, M.‐T., Carter, J. A., Sangha, H., & Anderson, B. J. (2018b). Substorm onset latitude and the steadiness of magnetospheric convection. Journal of Geophysical Research Space Physics, submitted.

      112 Morelli, J. P., et al. (1995). Radar observations of auroral zone flows during a multiple‐onset substorm. Annals of Geophysics, 13, 1144–1163. doi:10.1007/s00585‐995‐1144‐2

      113 Morley, S. K., & Lockwood, M. (2005). A numerical model of the ionospheric signatures of time‐varying magnetic reconnection: II. Measuring expansions in the ionospheric flow response. Annals of Geophysics, 23, 2501–2510.

      114 Morley, S. K., & Lockwood, M. (2006). A numerical model of the ionospheric signatures of time‐varying magnetic reconnection: III. Quasi‐instantaneous convection responses in the Cowley‐Lockwood paradigm. Annals of Geophysics, 24, 961–972. www.ann‐geophys.net/24/961/2006/

      115 Moses, J. J., Siscoe, G. L., Heelis, R. A., & Winningham, J. D. (1989). Polar cap deflation during magnetospheric substorms. Journal of Geophysical Research, 94, 3785.

      116 Nishida, A., Mukai, T., Yamamoto, T., Kokubun, S., & Maezawa, K. (1998). A unified model of the magnetotail convection in geomagnetically quiet and active times. Journal of Geophysical Research, 103(A3), 4409–4418.

      117 Nishida, A., Mukai, T., Yamamoto, T., Saito, Y., Kokubun, S., & Maezawa, K. (1995). Geotail observation of magnetospheric convection in the distant tail at 200 Re in quiet times. Journal of Geophysical Research, 100(A12), 23,663–23,675.

      118 Nishida, A., Yamamoto, T., Tsuruda, K., Hayakawa, H., Matsuoka, A., Kokubun, S., Nakamura, M., et al. (1994). Structure of the neutral sheet in the distant tail (X = 210 Re) in geomagnetically quiet times. Geophysical Research Letters, 21(25), 2951–2954.

      119 Parker, E. N. (1996). The alternative paradigm for magnetospheric physics. Journal of Geophysical Research, 101, 10587–10625.

      120 Pitkänen, T., Hamrin, M.,Kullen, A., Maggiolo, R., Karlsson, T., Nilsson, H., & Norqvist, P. (2016). Response of magnetotail twisting to variations in IMF By: A THEMIS case study 1–2 January 2009. Geophysical Research Letters, 43, 7822–7830. doi: 10.1002/2016GL070068

      121 Pitkänen, T., Hamrin, M., Norqvist, P., Karlsson, T., Nilsson, H., Kullen, A., Imber, S. M., et al. (2015). Azimuthal velocity shear within an Earthward fast flow ‐ further evidence for magnetotail untwisting? Annals of Geophysics, 33, 245–255. doi: 10.5194/angeo‐ 33‐245‐2015

      122 Reiff, P. H., & Burch, J. L. (1985). IMF By‐dependent plasma flow and Birkeland currents in the dayside magnetosphere; 2: A global model for northward and southward IMF. Journal of Geophysical Research, 90, 1595–1609.

      123 Reiff, P. H., Spiro, R. W., & Hill, T. W. (1981). Dependence of polar cap potential drop on interplanetary parameters. Journal of Geophysical Research, 86, 7639–7648. doi:10.1029/JA086iA09p07639

      124 Reistad, J. P., Østgaard, N., Laundal, K. M., Ohma, A., Snekvik, K., Tenfjord, P., et al. (2018). Observations of asymmetries in ionospheric return flow during different levels of geomagnetic activity. Journal of Geophysical Research Space Physics, 123. doi:10.1029/2017JA025051

      125 Reistad, J. P., Østgaard, N., Tenfjord, P., Laundal, K. M., Snekvik, K., Haaland, S., Milan, S. E., et al. (2016). Dynamic effects of restoring footpoint symmetry on closed magnetic field lines. Journal of Geophysical Research Space Physics, 121, 3963–3977. doi:10.1002/2015JA022058.

      126 Rich, F. J., & Hairston, M. (1994). Large‐scale convection patterns observed by DMSP. Journal of Geophysical Research, 99, 3827–3844.

      127 Richmond, A. D., & Kamide, Y. (1988). Mapping electrodynamic features of the high‐latitude ionosphere from localized observations: Technique. Journal of Geophysical Research, 93, 5741.

      128 Ridley, A. J., Lu, G., Clauer, C. R., & Papitashvili, V. O. (1997). Ionospheric convection during nonsteady interplanetary magnetic field conditions. Journal of Geophysical Research, 102, 14,563–14,579.

      129 Ridley, A. J., Lu, G., Clauer, C. R., & Papitashvili, V. O. (1998). A statistical study of the ionospheric convection response to changing interplanetary magnetic field conditions using the assimilative mapping of ionospheric electrodynamics technique. Journal of Geophysical Research, 103, 4023–4039.

      130 Rostoker, G., Akasofu, S.‐I., Foster, J., Greenwald, R. A., Kamide, СКАЧАТЬ