Название: Space Physics and Aeronomy, Ionosphere Dynamics and Applications
Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Жанр: Физика
isbn: 9781119815532
isbn:
131 Ruohoniemi, J. M., & Greenwald, R. A. (1996). Statistical patterns of high‐latitude convection obtained from Goose Bay HF radar observations. Journal of Geophysical Research, 101, 21743–21763.
132 Ruohoniemi, J. M., & Greenwald, R. A. (1998). The response of high‐latitude convection to a sudden southward IMF turning. Geophysical Research Letters, 25, 2913–2916.
133 Ruohoniemi, J. M., Shepherd, S. G., & Greenwald, R. A. (2002). The response of the high‐latitude ionosphere to IMF variations. Journal of Atmospheric and Solar‐Terrestrial Physics, 64, 159–171.
134 Russell, C. T. (1972). The configuration of the magnetosphere. In E. R. Dyer (Ed.), Critical problems of magnetospheric physics (p. 1). Washington, DC: National Academy of Sciences.
135 Russell, C. T., & McPherron, R. L. (1973). The magnetotail and substorms. Space Science Reviews, 15, 205.
136 Senior, C., Cerisier, J.‐C., Rich, F., Lester, M., & Parks, G. K. (2002). Strong sunward propagating flow bursts in the night sector during quiet solar wind conditions, SuperDARN and satellite observations. Annals of Geophysics, 20, 771–779.
137 Sergeev, V. A. (1977). On the state of the magnetosphere during prolonged periods of southward oriented IMF. Phys. Solariterr. Potsdam, 5, 39.
138 Sergeev, V. A., Pellinen, R. J., & Pulkkinen, T. I. (1996). Steady magnetospheric convection: A review of recent results. Space Science Reviews, 75, 551–604.
139 Shepherd, S. G. (2006). Polar cap potential saturation: Observations, theory, and modelling. Journal of Atmospheric and Solar‐Terrestrial Physics, 69, 234–248.
140 Siscoe, G., Raeder, J., & Ridley, A. J. (2004). Transpolar potential saturation models compared. Journal of Geophysical Research, 109, A09203. doi:10.1029/2003JA010318
141 Siscoe, G. L., & Huang, T. S. (1985). Polar cap inflation and deflation. Journal of Geophysical Research, 90, 543–547.
142 Siscoe, G. L., Crooker, N. U., & Siebert, K. D. (2002). Transpolar potential saturation: Roles of region 1 current system and solar wind ram pressure. Journal of Geophysical Research, 107(A10), 1321. doi:10.1029/2001JA009176
143 Sofko, G. J., Greenwald, R., & Bristow, W. (1995). Direct determination of large‐scale magnetospheric field‐aligned currents with SuperDARN. Geophysical Research Letters, 22, 2041–2044.
144 Stern, D. P. (1973). A study of the electric field in an open magnetospheric model. Journal of Geophysical Research, 78, 7292.
145 Taguchi, S., & Hoffman, R. A. (1996). Ionospheric plasma convection in the midnight sector for northward interplanetary magnetic field. Journal of Geomagnetism and Geoelectricity, 48(5–6), 925–933.
146 Taguchi, S., Sugiura, M., Winningham, I., & Slavin, J. A. (1994). By‐controlled convection and field‐aligned currents near midnight auroral oval for northward interplanetary magnetic‐field. Journal of Geophysical Research, 99(A4), 6027–6044.
147 Tanaka, T. (2001). Interplanetary magnetic field By and auroral conductance effects on high‐latitude ionospheric convection patterns. Journal of Geophysical Research, 106(A11), 24,505–24,516.
148 Taylor, J. R., Yeoman, T. K., Lester, M., Emery, B. A., & Knipp, D. J. (1996). Variations in the polar cap area during intervals of substorm activity on 20–21 March 1990 deduced from AMIE convection maps. Annals of Geophysics, 14, 879–887.
149 Tenfjord, P., Østgaard, N., Snekvik, K., Laundal, K. M., Reistad, J., Haaland, S., & Milan, S. E. (2015). How the IMF BY induces a BY component in the closed magnetosphere and how it leads to asymmetric currents and convection patterns in the two hemispheres. Journal of Geophysical Research Space Physics, 120. doi:10.1002/2015JA021579
150 Thomas, E. G., & Shepherd, S. G. (2018). Statistical patterns of ionospheric convection derived from mid‐latitude, high‐latitude, and polar SuperDARN HF radar observations. Journal of Geophysical Research Space Physics, 123, 3196–3216. doi:10.1002/2018JA025280
151 Todd, H., Cowley, S. W. H., Lockwood, M., Willis, D. M., & Luhr, H. (1988). Response time of the high latitude dayside ionosphere to sudden changes in the north‐south component of the IMF. Planetary and Space Science, 36, 1415–1428.
152 Toffoletto, F. R., & Hill, T. W. (1989). Mapping the solar wind electric field to the Earth's polar caps. Journal of Geophysical Research, 94, 329.
153 Vasyliunas, V. M. (2005). Relation between magnetic fields and electric currents in plasmas. Annals of Geophysics, 23, 2589–2597. doi: 10.5194/angeo‐23‐2589‐2005
154 Volland, H. (1973). A semiempirical model of large‐scale magnetospheric electric fields. Journal of Geophysical Research, 78, 171–180.
155 Walach, M.‐T., & Milan, S. E. (2015). Are steady magnetospheric convection events prolonged substorms? Journal of Geophysical Research Space Physics, 120. doi: 10.1002/2014JA020631
156 Walach, M.‐T., Milan, S. E., Yeoman, T. K., Hubert, B. A., & Hairston, M. R. (2017). Testing nowcasts of the ionospheric convection from the expanding and contracting polar cap model. Space Weather, 15. doi:10.1002/2017SW001615
157 Watanabe, M., Sato, N., Greenwald, R. A., Pinnock, M., Hairston, M. R., Rairden, R. L., & McEwen, D. J. (2000). The ionospheric response to interplanetary magnetic field variations: Evidence for rapid global change and the role of preconditioning in the magnetosphere. Journal of Geophysical Research, 105, 22,995–22,977.
158 Weimer, D. R. (2005). Improved ionospheric electrodynamic models and application to calculating Joule heating rates. Journal of Geophysical Research, 110, A05306. doi:10.1029/2004JA010884
159 Wild, J. A., Cowley, S. W. H., Davies, J. A., Khan, H., Lester, M., Milan, S. E., Provan, G., et al. (2001). First simultaneous observations of flux transfer events at the high‐latitude magnetopause by the Cluster spacecraft and pulsed radar signatures in the conjugate ionosphere by the CUTLASS and EISCAT radars. Annals of Geophysics, 19, 1491–1508.
160 Williams, P. J. S., Virdi, T. S., & Cowley, S. W. H. (1989). Substorm processes in the geomagnetic tail and their effect in the nightside auroral zone ionosphere, as observed by EISCAT. Philosophical Transactions of the Royal Society of London, Ser. A., 328, 137.
161 Willis, D., Lockwood, M., Cowley, S. W. H., van Eyken, A. P., Bromage, B. J. I., Rishbeth, H., Smith, P. R., et al. (1986). A survey of simultaneous observations of the high‐latitude ionosphere and interplanetary magnetic field with EISCAT and AMPTE‐UKS. Journal of Atmospheric and Terrestrial Physics, 48, 987.
162 Wolf, R. A. (1970). Effects of ionospheric conductivity on convective flow of plasma in the magnetosphere. Journal of Geophysical Research, 75, 4677–4698.
163 Wygant, J. R., Torbert, R. B., & Mozer, F. S. (1983). Comparison of S3‐2 polar cap potential drops with interplanetary magnetic field and models of magnetopause reconnection. Journal of Geophysical Research, 88, 5727.
164 Zmuda, A. J., Heuring, F. T., & Martin, J. H. (1967). Dayside magnetic disturbances at 1,100 km in the auroral oval. Journal of Geophysical Research, 72, 1115–1117. doi: 10.1029/JZ072i003p01115
165 Zmuda, A. J., Martin, J. H., & Heuring, F. T. (1966). Transverse magnetic disturbances at 1100 kilometres in the auroral region. Journal of Geophysical Research, 71, 5033–5045.