Название: Space Physics and Aeronomy, Ionosphere Dynamics and Applications
Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Жанр: Физика
isbn: 9781119815532
isbn:
63 Heppner, J. P., & Maynard, N. C. (1987). Empirical high‐latitude electric‐field models. Journal of Geophysical Research, 92, 4467–4489.
64 Holzer, T. E., McPherron, R. L., & Hardy, D. A. (1986). A quantitative empirical model of the magnetospheric flux transfer process. Journal of Geophysical Research, 91, 3287.
65 Hones, E. W., Jr., (1979). Transient phenomena in the magnetotail and their relationship to substorms. Space Science Reviews, 23, 393.
66 Huang, C.‐S., DeJong, A. D., & Cai, X. (2009). Magnetic flux in the magnetotail and polar cap during sawteeth, isolated substorms, and steady magnetospheric convection events. Journal of Geophysical Research, 114, A07202. doi:10.1029/2009JA014232
67 Huang, C.‐S., Sofko, G. J., Koustov, A. V., Andre, D. A., Ruohoniemi, J. M., Greenwald, R. A., & Hairston, M. R. (2000). Evolution of ionospheric multicell convection during northward interplanetary magnetic field with |Bz/By| > 1. Journal of Geophysical Research, 105, 27095–27107.
68 Hubert, B., Gérard, J.‐C., Milan, S. E., & Cowley, S. W. H. (2017). Magnetic reconnection during steady magnetospheric convection and magnetospheric modes. Annals of Geophysics, 35, 505–524. doi:10.5194/angeo‐35‐505‐2017
69 Hubert, B., Milan, S. E., Grocott, A., Cowley, S. W. H., & Gérard, J.‐C. (2006). Dayside and nightside reconnection rates inferred from IMAGE‐FUV and SuperDARN data. Journal of Geophysical Research, 111, A03217. doi:10.1029/2005JA011140
70 Iijima, T., & Potemra, T. A. (1976a). Amplitude distribution of field‐aligned currents at northern high latitudes observed by Triad. Journal of Geophysical Research, 81, 2165–2174. doi:10.1029/JA081i013p02165.
71 Iijima, T., & Potemra, T. A. (1976b). Field‐aligned currents in the dayside cusp observed by Triad. Journal of Geophysical Research, 81, 5971–5979. doi:10.1029/JA081i034p05971
72 Iijima, T., & Potemra, T. A. (1978). Large‐scale characteristics of field‐aligned currents associated with substorms. Journal of Geophysical Research, 83, 599–615.
73 Imber, S. M., Milan, S. E., & Hubert, B. (2006). Ionospheric flow and auroral signatures of dual lobe reconnection. Annals of Geophysics, 24, 3115–3129.
74 Kamide, Y., & Vickrey, J. F. (1983). Variability of the Harang discontinuity as observed by the Chatanika radar and the IMS Alaska magnetometer chain. Geophysical Research Letters, 10, 159.
75 Kamide, Y., Kokubun, S., Bargatze, L. F., & Frank, L. A. (1999). The size of the polar cap as an indicator of substorm energy. Physics and Chemistry of the Earth C, 24, 119.
76 Khan, H., & Cowley, S. W. H. (1999). Observations of the response time of high‐ latitude ionospheric convection to variations in the interplanetary magnetic field using EISCAT and IMP‐8 data. Annals of Geophysics, 17, 1306–1335.
77 Khurana, K. K., Walker, R. J., & Ogino, T. (1996). Magnetic convection in the presence of interplanetary magnetic field By: A conceptual model and simulations. Journal of Geophysical Research, 101, 4907–4916.
78 Kissinger, J., McPherron, R. L., Hsu, T.‐S., Angelopoulos, V., & Chu, X. (2012). Necessity of substorm expansions in the initiation of steady magnetospheric convection. Geophysical Research Letters, 39, L15105. doi:10.1029/2012GL052599
79 Koskinen, H. E. J., & Pulkkinen, T. (1995). Midnight velocity shear zone and the concept of Harang discontinuity. Journal of Geophysical Research, 100, 9539–9547.
80 Kunkel, T., Baumjohann, W., Untiedt, J., &. Greenwald, R. (1986). Electric fields and currents at the Harang discontinuity: A case study. Journal of Geophysical Research, 59, 73–86.
81 Laundal, K. M., Finlay, C. C., Olsen, N., & Reistad, J. P. (2018). Solar wind and seasonal influence on ionospheric currents from Swarm and CHAMP measurements. Journal of Geophysical Research Space: Physics, 123. doi:10.1029/2018JA025387
82 Laundal, K. M., Haaland, S. E., Lehtinen, N., Gjerloev, J. W., Østgaard, N., Tenfjord, P., Reistad, J. P., et al. (2015). Birkeland current effects on high‐latitude ground magnetic field perturbations. Geophysical Research Letters, 42, 7248–7254. doi: 10.1002/2015GL065776
83 Lockwood, M. (1991). On flow reversal boundaries and transpolar voltage in average models of high latitude convection. Planetary and Space Science, 3, 397–409.
84 Lockwood, M., & Cowley, S. W. H. (1992). Ionospheric convection and the substorm cycle. In Proceedings of the International Conference on Substorms (ICS‐1) (pp. 99–109). Noordwijk, The Netherlands: ESA.
85 Lockwood, M., & Cowley, S. W. H. (1999). Comment on “A statistical study of the ionospheric convection response to changing interplanetary magnetic field conditions using the assimilative mapping of ionospheric electro‐ dynamics technique” by Ridley et al. Journal of Geophysical Research, 104, 4387–4391.
86 Lockwood, M., & Morley, S. K. (2004). A numerical model of the ionospheric signatures of time‐varying magnetic reconnection: I. Ionospheric convection. Annals of Geophysics, 22, 73–91.
87 Lockwood, M., Cowley, S. W. H., & Freeman, M. P. (1990). The excitation of plasma convection in the high‐latitude ionosphere. Journal of Geophysical Research, 95, 7961–7972.
88 Lockwood, M., Moen, J., Cowley, S. W. H., Farmer, A. D., Lovhaug, U. P., Luhr, H. & Davda, V. N. (1993). Variability of dayside convection and motions of the cusp/cleft aurora. Geophysical Research Letters, 20, 1011–1014.
89 Lockwood, M., Sandholt, P. E., Cowley, S. W. H., & Oguti, T. (1989). Interplanetary magnetic field control of dayside auroral activity and the transfer of momentum across the dayside magnetopause. Planetary and Space Science, 37, 1347.
90 Lockwood, M., van Eyken, A. P., Bromage, B. J. I., Willis, D. M., & Cowley, S. W. H. (1986). Eastward propagation of a plasma convection enhancement following a southward turning of the interplanetary magnetic field. Geophysical Research Letters, 13, 72–76.
91 Lu, G., Holzer, T. E., Lummerzheim, D., Ruohoniemi, J. M., Stauning, P., Troshichev, O., Newell, P. T., et al. (2002). Ionospheric response to the interplanetary magnetic field southward turning: Fast onset and slow reconfiguration. Journal of Geophysical Research, 107, A81153. doi: 10.1029/2001JA000324
92 Lyons, L. R. (1985). A simple model for polar cap convection patterns and generation of auroras. Journal of Geophysical Research, 90, 1561.
93 McPherron, R. L. (1970). Growth phase of magnetospheric substorms. Journal of Geophysical Research, 75, 5592–5599. doi: 10.1029/JA075i028p05592
94 McPherron, R. L., Russell, C. T., & Aubry, M. (1973). Satellite studies of magnetospheric substorms on August 15, 1978: 9. Phenomenological model for substorms. Journal of Geophysical Research, 78, 3131–3149.
95 McWilliams, K. A. (1997). A SuperDARN study of dayside field‐aligned current regions. MSc thesis, University of Saskatchewan, Saskatoon, Sask., Canada.
96 McWilliams, K. A., Pfeifer, J. B., & McPherron, R. L. (2008). Steady magnetospheric convection selection criteria: implications of global SuperDARN convection measurements. Geophysical Research Letters, 35, L09102.
97 Milan, S. E. (2004). Dayside and nightside contributions to the cross polar cap potential: Placing an upper limit on a viscous‐like interaction. Annals of Geophysics, 22, 3771–3777.
98 Milan, СКАЧАТЬ