Математические модели в естественнонаучном образовании. Том II. Денис Владимирович Соломатин
Чтение книги онлайн.

Читать онлайн книгу Математические модели в естественнонаучном образовании. Том II - Денис Владимирович Соломатин страница 12

СКАЧАТЬ расстояния от каждого из таксонов
 в
. Теперь включите
 в таблицу данных о расстоянии и отбросьте
 и
.

      Шаг 4: Таблица расстояний теперь включает

 таксонов. Если есть только 3 таксона, используйте 3-точечные формулы для завершения работы алгоритма. В противном случае вернитесь к шагу 1.

      Как уже можете видеть, метод присоединения соседей утомительно реализовывать вручную. Несмотря на то, что шаги относительно просты, легко потеряться в процессе с таким количеством арифметики. В упражнениях найдете пример частично отработанных данных, с которыми нужно завершить алгоритм, для лучшего понимания шагов. После этого предлагается написать и использовать компьютерную программу, чтобы избежать ошибок.

      Точность различных методов построения деревьев – трех, описанных до выше в этой главе, и многих других – проверялась в первую очередь путем моделирования мутаций ДНК в соответствии с определенными филогенетическими деревьями, а затем применяя разные методы, сравнивали, как часто они восстанавливают правильное дерево. Некоторые исследования также были проведены с реальными таксонами, связанными известным филогенетическим деревом; деревья, построенные из последовательностей ДНК с использованием различных методов, можно было затем сравнить с заведомо правильным деревом. Эти тесты привели исследователей к большей уверенности в результативности описанного метода присоединения соседей, чем других методах, которые обсуждали ранее. Хотя UPGMA или FM-алгоритм могут быть надежными при некоторых обстоятельствах, метод присоединения соседей хорошо работает с более широким диапазоном данных. Например, если молекулярные часы не существуют, то лучше использовать метод присоединения соседей, поскольку он не предполагает неявных допущений о молекулярных часах. Поскольку в настоящее время накоплено много данных, указывающих на то, что гипотеза молекулярных часов часто нарушается, таким образом метод присоединения соседей становится предпочтительным дистанционным методом для построения дерева.

      Задачи для самостоятельного решения:

      5.3.1. Перед проработкой примера, в целях более глубокого понимания метода присоединения соседей, полезно вывести формулы используемые на шаге 2 и 3 изложенного алгоритма. Предположим, что решили объединить

 и
 на шаге 1.

      а. Покажите, что на шаге 2 расстояния от

 могут быть найдены по следующим формулам:
,
.

      Затем покажите, что вторая из этих формул может быть заменена на

.

      б. Покажите, что на шаге 3 расстояния от

 до
, для
, могут быть вычислены с помощью формулы
.

      Таблица 5.11.  Расстояния между таксонами для задачи 5.3.2

СКАЧАТЬ