Математические модели в естественнонаучном образовании. Том II. Денис Владимирович Соломатин
Чтение книги онлайн.

Читать онлайн книгу Математические модели в естественнонаучном образовании. Том II - Денис Владимирович Соломатин страница 14

СКАЧАТЬ количества возможных мутаций. Чтобы оценить количество мутаций никогда не вычисляются расстояния, а вместо этого рассматривается, как мутации происходят в имеющихся последовательностях на каждом отдельном участке.

      Общий план таков: для данного дерева каким-то образом подсчитывается наименьшее количество мутаций, которое потребовалось бы, если бы последовательности возникли от общего предка в соответствии с этим деревом. Это число называется скупой оценкой дерева. Далее одно за другим рассматриваются все деревья, которые могут связать интересующие таксоны, и вычисляется оценку экономии для каждого из них. Затем выбирается дерево, которое имеет наименьшую оценку экономии. Это дерево, самое экономное, является тем, которое метод считает оптимальным для имеющихся данных о мутирующей последовательности.

      В качестве первого шага реализации намеченного плана понадобится найти способ вычисления оценки экономии для определенного дерева и последовательностей. Предположим, что смотрим на один участок в ДНК для каждого из таксонов и видим, например,

: A,
 : T,
 : T,
 : G,
 : A.

      Если представить, что они были связаны деревом, показанным на рисунке 5.18, то можно пройти обратно вверх по дереву, чтобы определить, какое основание могло быть на этом на каждой внутренней вершине, предполагая наименьшее количество возможных мутаций.

      Рисунок 5.18. Вычисление оценки экономии для дерева на одном сайте.

      Например, выше

 и
 и
 должно быть T; никакой дополнительной мутации не требуется, кроме той, которую уже посчитали. Теперь обозначили две внутренние вершины и по-прежнему имеем одну мутацию.

      Продолжая продвигаться вверх по дереву, помещаем основание или набор возможных оснований на каждой вершине. Если под вершиной находятся два разных основания (или множества оснований, которые не пересекаются), нужно будет увеличить количество мутаций на 1 и объединить два основания (или взять объединение множеств) в один больший набор возможных оснований на более высокой вершине. Если два низших основания согласуются (или множества имеют общие элементы), то обозначаем высшую вершину этим основанием (или пересечением двух множеств). В этом случае не нужно подсчитывать дополнительную мутацию. Когда все вершины дерева помечены, конечное значение количества мутаций дает минимальное количество мутаций, необходимое для того, чтобы это дерево правильно описало эволюцию таксонов. Таким образом, дерево на рисунке 5.18 будет иметь минимальное количество мутаций, или показатель экономии, равный 3.

      На самом деле есть несколько важных фактов, которые здесь использовались без доказательства. СКАЧАТЬ