Название: Mathematik für Ingenieure II für Dummies
Автор: J. Michael Fried
Издательство: John Wiley & Sons Limited
Жанр: Математика
isbn: 9783527839100
isbn:
Zur Lösung eines beliebigen LGS
Die erlaubten elementaren Zeilenumformungen sind dabei:
Multiplikation einer Zeile mit einem Skalar :
Vertauschung zweier Zeilen
Addition eines Vielfachen einer Zeile zu einer anderen Zeile:
Mit Hilfe der obigen Zeilenumformungen führen Sie die Gauß-Elimination so durch:
1 Bilden Sie die erweiterte Systemmatrix , indem Sie die Matrix rechts um eine Spalte mit dem Rechte-Seite-Vektor erweitern. Setzen Sie .Nach jedem der folgenden Schritte erhalten Sie eine neue erweiterte Systemmatrix, die Sie aber der Übersichtlichkeit halber wieder mit bezeichnen. Genauso bezeichnen Sie auch die neuen Komponenten wieder mit .
2 Ist die Komponente , dann tauschen Sie eine Zeile mit der erweiterten Systemmatrix mit der Zeile . Falls es unterhalb der -ten Zeile keine Zeile mit gibt, sind Sie fertig und gehen zu Schritt 7.Prinzipiell ist es gleichgültig, durch welche Zeile Sie dabei die -te Zeile ersetzen, solange nach dem Tausch die Komponente ist. Bei der praktischen Rechnung wählen Sie hier möglichst eine Zeile mit Komponente .
3 Putzen Sie unterhalb der -ten Zeile die -e Spalte, indem Sie zu jeder Zeile mit das -Fache der -ten Zeile addieren.Sie bearbeiten also nur die Zeilen unterhalb der -ten Zeile und erhalten eine neue erweiterte Systemmatrix, bei der in der -ten Spalte unterhalb der Diagonalkomponente nur noch Nullen stehen.
4 Setzen Sie .
5 Ist , dann sind Sie fertig und gehen zu Schritt 7.
6 Gehen Sie zu Schritt 2, und fahren Sie dort fort.Falls Sie nicht vorher zu Schritt 7 springen, dann wiederholen Sie diesen Algorithmus Zeile für Zeile, bis Sie in der letzten Zeile angekommen sind.
7 Beenden Sie die Elimination.
Mit diesem Eliminationsalgorithmus bringen Sie die erweiterte Matrix
Die Zahl
In den ersten
Für die Lösbarkeit des LGS
Nicht lösbar, falls die Zahlen nicht alle gleich null sind.
Nicht eindeutig lösbar, falls ist, das heißt, falls alle sind. Die Unbekannten können frei gewählt werden. Die restlichen Unbekannten ergeben sich dann eindeutig aus den frei gewählten Unbekannten.
Eindeutig lösbar, falls ist. Die Lösung erhalten Sie durch Rückwärtslösen.
Eigenwerte, Eigenvektoren und die Definitheit von Matrizen
Wie im Abschnitt »Ganz sicher: Hinreichende Optimalitätsbedingung« aus Kapitel 5 dargestellt wird, spielt bei der Untersuchung auf Extremstellen mehrdimensionaler Funktionen die Definitheit von symmetrischen Matrizen eine ähnlich wesentliche Rolle wie das Vorzeichen der zweiten Ableitung für eindimensionale Funktionen.
Eine symmetrische СКАЧАТЬ