Physikalische Chemie. Peter W. Atkins
Чтение книги онлайн.

Читать онлайн книгу Physikalische Chemie - Peter W. Atkins страница 112

Название: Physikalische Chemie

Автор: Peter W. Atkins

Издательство: John Wiley & Sons Limited

Жанр: Химия

Серия:

isbn: 9783527828326

isbn:

СКАЧАТЬ align="center">

      Motivation

      Die meisten chemischen Reaktionen laufen bei konstanter Temperatur und konstantem Druck ab. Bei diesen Bedingungen ist der Begriff der Freien Enthalpie (auch Gibbs‐Energie) von zentraler Bedeutung für thermodynamische Prozesse. Die Überlegungen in diesem Abschnitt bilden die Grundlage zur Diskussion von Phasenübergängen, chemischen Gleichgewichten und bioenergetischer Fragen.

      Schlüsselideen

      Die Freie Enthalpie ist das wesentliche Kriterium, das bestimmt, ob ein Prozess bei konstanter Temperatur und konstantem Druck spontan abläuft. Die Freie Enthalpie entspricht der maximalen Nichtvolumenarbeit, die ein System verrichten kann.

      Voraussetzungen

      In diesem Abschnitt werden wir unsere bisherigen Betrachtungen zur Clausius'schen Ungleichung (siehe Abschn. 3.1) vertiefen, und wir greifen auf Informationen über Standardzustände und die Reaktionsenthalpie zurück, die wir in Abschn. 2.3 eingeführt haben. Zur Herleitung der Born'schen Gleichung benötigen wir die potenzielle (Coulomb‐)Energie der Wechselwirkung zwischen zwei elektrischen Punktladungen (siehe „Toolkit 6: Arbeit und Energie“ in Abschn. 2.1).

      Mithilfe des Grundbegriffs „Entropie“ kann man die Richtung realer Zustandsänderungen vorhersagen; dies setzt jedoch voraus, dass wir die Änderungen der Entropie sowohl im System als auch in der Umgebung untersuchen. Wie wir in Abschn. 3.1 gesehen haben, ist die Berechnung der Entropieänderung der Umgebung nicht kompliziert (ΔSUmg = qUmg/TUmg); als Nächstes werden wir eine einfache Methode entwickeln, um diesen Beitrag automatisch zu berücksichtigen. Dadurch konzentrieren wir uns in Zukunft nur noch auf das System selbst, was unsere Diskussion vereinfacht. Darüber hinaus bilden die folgenden Überlegungen die Grundlage aller Anwendungen der chemischen Thermodynamik, mit denen wir uns später beschäftigen wollen.

      Wir betrachten ein System, dass sich bei der Temperatur T im thermischen Gleichgewicht mit seiner Umgebung befindet. Nun soll infolge einer Zustandsänderung des Systems ein Wärmeaustausch mit der Umgebung stattfinden; die Clausius'sche Ungleichung (dS ≥ dq/T, Gl. (3.11)) lautet dann

      (3.25)image

      Aus dieser Ungleichung können wir je nach den Prozessbedingungen (konstanter Druck oder konstantes Volumen) verschiedene Aussagen gewinnen.

      (a) Kriterien der Freiwilligkeit

      Betrachten wir zunächst den Fall des Wärmeaustauschs bei konstantem Volumen. Wenn weder Volumenarbeit noch eine andere Form von Arbeit verrichtet wird, ist dqV = dU; in die Clausius'sche Ungleichung eingesetzt, ergibt sich

image

      Die spezielle Bedeutung dieser Beziehung liegt darin, dass sie die Bedingungen für eine freiwillige Zustandsänderung einzig und allein anhand von Zustandsfunktionen des Systems formuliert. Nach geeigneter Umformung erhält man leicht

      Wenn die Innere Energie konstant bleiben soll, also dU = 0 ist, folgt TdS ≥ 0; da aber T > 0 ist, wird aus dieser Beziehung dSU,V ≥ 0. (Der Index gibt die Größen an, die konstant bleiben sollen.) Diese Beziehung gibt die Bedingungen für die Freiwilligkeit von Prozessen als Funktion der Eigenschaften des Systems an. Die Ungleichung besagt, dass in einem System mit konstantem Volumen und konstanter Innerer Energie (etwa einem abgeschlossenen System) die Entropie bei freiwilligen Zustandsänderungen zunimmt. Dies entspricht inhaltlich der Aussage des Zweiten Hauptsatzes der Thermodynamik.

      Wenn der Wärmeaustausch bei konstantem Druck stattfindet und keine Arbeit außer Volumenarbeit verrichtet wird, gilt dqp = dH, woraus folgt

      Die Spontaneitätskriterien bei konstantem Volumen und konstantem Druck können wir einfacher ausdrücken, indem wir zwei weitere thermodynamische Größen einführen. Als erstes definieren wir die Freie Energie A,

      Die zweite Größe ist die Freie Enthalpie G, die folgendermaßen definiert ist:

      Wenn bei konstanter Temperatur eine (infinitesimale) Zustandsänderung eintritt, beträgt die Änderung der beiden Funktionen