Urban Remote Sensing. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Urban Remote Sensing - Группа авторов страница 44

Название: Urban Remote Sensing

Автор: Группа авторов

Издательство: John Wiley & Sons Limited

Жанр: География

Серия:

isbn: 9781119625858

isbn:

СКАЧАТЬ J.A., Palmason, J.A. and Sveinsson, J.R. (2005) Classification of hyperspectral data from urban areas based on extended morphological profiles. IEEE Transactions on Geoscience and Remote Sensing, 43(3), 480–491.

      11 Berni, J.A.J., Zarco‐Tejada, P., Suárez, L. and Fereres, E. (2009) Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle. IEEE Transactions on Geoscience and Remote Sensing, 47(3), 722–738.

      12 Besada, J.A., Bergesio, L., Campaña, I. et al. (2018) Drone mission definition and implementation for automated infrastructure inspection using airborne sensors. Sensors, 18(4), 1170.

      13 Boonpook, W., Tan, Y., Liu, H., Zhao, B. and He, L. (2018) UAV‐based 3d urban environment monitoring. ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences, 4(3), 37–43.

      14 Boukoberine, M.N., Zhou, Z. and Benbouzid, M. (2019) A critical review on unmanned aerial vehicles power supply and energy management: solutions, strategies, and prospects. Applied Energy, 255, 113823.

      15 Brach, M., Cheung‐Wai Chan, J. and Szymański, P. (2019) Accuracy assessment of different photogrammetric software for processing data from low‐cost UAV platforms in forest conditions. iForest ‐ Biogeosciences & Forestry, 12(5), 435–441.

      16 Bravo, R.Z.B., Leiras, A. and Cyrino Oliveira, F.L. (2019) The use of UAVs in humanitarian relief: an application of POMDP‐based methodology for finding victims. Production & Operations Management, 28(2), 421–440.

      17 Calderón, R., Montes‐Borrego, M., Landa, B.B., Navas‐Cortés, J.A. and Zarco‐Tejada, P. (2014) Detection of downy mildew of opium poppy using high‐resolution multi‐spectral and thermal imagery acquired with an unmanned aerial vehicle. Precision Agriculture, 15(6), 639–661.

      18 Campos‐Taberner, M., Romero‐Soriano, A., Gatta, C. et al. (2016) Processing of extremely high‐resolution Lidar and RGB data: outcome of the 2015 IEEE GRSS data fusion contest–part a: 2‐D contest. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(12), 5547–5559.

      19 Card, B.A. (2018) Terror from above: how the commercial unmanned aerial vehicle revolution threatens the US threshold. Air & Space Power Journal, 32(1), 80–96.

      20 Chauhan, S.K. (2019) Scholarly output on drone research: a bibliometric study. DESIDOC Journal of Library & Information Technology, 39(2), 117–124.

      21 Chiabrando, F., Spanò, A., Sammartano, G. and Losè, L.T. (2017) UAV oblique photogrammetry and lidar data acquisition for 3D documentation of the Hercules Fountain. Virtual Archaeology Review, 8(16), 83.

      22 Clothier, R.A. and Walker, R.A. (2015) The safety risk management of unmanned aircraft systems. in Handbook of Unmanned Aerial Vehicles (eds K.P. Valavanis and G.J. Vachtsevanos), pp. 2229–2275. Dordrecht, Netherlands: Springer Science + Business Media B.V.

      23 Colomina, I., Blázquez, M., Molina, P. et al. (2008) Towards A New Paradigm for High‐Resolution Low‐Cost Photogrammetryand Remote Sensing. Proceedings of the International Society for Photogrammetry and Remote Sensing (ISPRS) XXI Congress, p. 1201.

      24 Colomina, I. and Molina, P. (2014) Unmanned aerial systems for photogrammetry and remote sensing: a review. ISPRS Journal of Photogrammetry and Remote Sensing, 92, 79–97.

      25 Cryderman, C., Mah, S.B. and Shufletoski, A. (2014) Evaluation of UAV photogrammetric accuracy for mapping and earthworks computations. Geomatica, 68(4), 309–317.

      26 Dalponte, M., Coops, N.C., Bruzzone, L. and Gianelle, D. (2009) Analysis on the use of multiple returns LiDAR data for the estimation of tree stems volume. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2(4), 310–318.

      27 Day, D., Weaver, W. and Wilsing, L. (2016) Accuracy of UAS photogrammetry: a comparative evaluation. Photogrammetric Engineering & Remote Sensing, 82 (12), 909–914.

      28 Devriendt, L. and Bonne, J. (2014) UAS Mapping as an alternative for land surveying techniques? The International Archives of Photogrammetry, Remote Sensing & Spatial Information Sciences, 40(3), 39.

      29 Ding, D., Wang, Y., Xiao, Y. and Han, Z. (2018) Low‐altitude Fixed‐wing UAV Obstacle Recognition Based on Deep Learning. 2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC), CSAA Guidance, Navigation and Control Conference (CGNCC), 2018 IEEE, pp. 1–6.

      30 Dong, X., Ren, Y., Meng, J. et al. (2018) Design and Implementation of Multi‐rotor UAV Power Relay Platform. 2018 2nd IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), 2018 2nd IEEE, pp. 1142–1146.

      31 Erenoglu, R.C., Erenoglu, O. and Arslan, N. (2018) Accuracy assessment of low cost UAV based city modelling for urban planning. Tehnicki Vjesnik‐Technical Gazette, 25 (6), 1708–1714.

      32 Federal Aviation Administration (2013) Pack safe: lithiumion and lithium metal batteries, spare (uninstalled). Available: https://www.faa.gov/hazmat/packsafe/more_info/?hazmat=7 (accessed 20 June 2018).

      33 Floro da Silva, N.B. and Branco, K.R.L.J.C. (2013) A New Concept of VTOL as Fixed‐wing. International Conference on Unmanned Aircraft Systems (ICUAS), IEEE, Atlanta, GA, USA, May 28–31, 2013

      34 Forlani, G., Dall’Asta, E., Diotri, F. et al. (2018) Quality assessment of DSMs produced from UAV flights georeferenced with on‐board RTK positioning. Remote Sensing, 10(2), 311.

      35 Forsmoo, J., Anderson, K., Macleod, C.J.A. et al. (2019) Structure from motion photogrammetry in ecology: does the choice of software matter? Ecology & Evolution (20457758), 9(23), 12964–12979.

      36 Fraser, B.T. and Congalton, R.G. (2018) Issues in unmanned aerial systems (UAS) data collection of complex forest environments. Remote Sensing, 10(6), 908.

      37 Gabrlik, P., Cour‐Harbo, A., Kalvodova, P., Zalud, L. and Janata, P. (2018) Calibration and accuracy assessment in a direct georeferencing system for UAS photogrammetry. International Journal of Remote Sensing, 39 (15–16), 4931–4959.

      38 Gagliolo, S., Ausonio, E., Federici, B. et al. (2018) 3D culture heritage documentation: a comparison between different photogrammetric software and their products. The International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 42, 2, 347–354.

      39 Gilman, D. (2014) Unmanned Aerial Vehicles in Humanitarian Response, United Nations Office for the Coordination of Humanitarian Affairs (OCHA), Geneva.

      40 Gonzalez‐Aguilera, D., Crespo‐Matellan, E., Hernandez‐Lopez, D. and Rodriguez‐Gonzalvez, P. (2012) Automated urban analysis based on LiDAR‐derived building models. IEEE Transactions on Geoscience & Remote Sensing, 51(3), 1844–1851.

      41 González‐Jorge, H., Martínez‐Sánchez, J., Bueno, M. and Arias, a.P. (2017) Unmanned aerial systems for civil applications: a review. Drones, 1(1), 2.

      42 Grubesic, T.H., Wallace, D., Chamberlain, A.W. and Nelson, J.R. (2018) Using unmanned aerial systems (UAS) for remotely sensing physical disorder in neighborhoods. Landscape & Urban Planning, 169, 148–159.

      43 Haboudane, D., Miller, J.R., Pattey, E., Zarco‐Tejada, P. and Strachan, I.B. (2004) Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: modeling and validation in the context of precision agriculture. Remote Sensing of Environment, 90(3), 337–352.

СКАЧАТЬ