Urban Remote Sensing. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Urban Remote Sensing - Группа авторов страница 45

Название: Urban Remote Sensing

Автор: Группа авторов

Издательство: John Wiley & Sons Limited

Жанр: География

Серия:

isbn: 9781119625858

isbn:

СКАЧАТЬ malaria vector habitats. Parasites & Vectors, 10, 1–13.

      45 Hassan, F.M., Lim, H.S. and Mat Jafri, M.Z. (2011) CropCam UAV for land use/land cover mapping over Penang Island, Malaysia. Pertanika Journal of Science & Technology, 19, 70–76.

      46 Hodgson, J.C. and Koh, L.P. (2016) Best practice for minimising unmanned aerial vehicle disturbance to wildlife in biological field research. Current Biology, 26 (10),R404–R405.

      47 Howell, T.L., Singh, K.K. and Smart, L. (2018) Structure from motion techniques for estimating the volume of wood chips. in High Spatial Resolution Remote Sensing: Data, Techniques, and Applications (eds Y. He and Q. Weng), pp. 149–164. Boca Raton: CRC Press.

      48 Hu, J. and Lanzon, A. (2018) An innovative tri‐rotor drone and associated distributed aerial drone swarm control. Robotics & Autonomous Systems, 103, 162–174.

      49 Hussain, E., Ural, S., Kim, K., Fu, C. and Shan, J. (2011) Building extraction and rubble mapping for City Port‐au‐Prince post‐2010 earthquake with GeoEye‐1 imagery and Lidar data. Photogrammetric Engineering & Remote Sensing, 77 (10), 1011–1023.

      50 Iizuka, K., Kato, T., Silsigia, S., Soufiningrum, A.Y. and Kozan, O. (2019) Estimating and examining the sensitivity of different vegetation indices to fractions of vegetation cover at different scaling Grids for Early Stage Acacia Plantation Forests Using a Fixed‐Wing UAS. Remote Sensing, 11 (15), 1816.

      51 Ippolito, C., Krishnakumar, K. and Hening, S. (2016) Preliminary Results of Powerline Reconstruction from Airborne LiDAR for Safe Autonomous Low‐Altitude Urban Operations of Small UAS. 2016 IEEE Sensors. IEEE, Orlando, FL, October 30 – November 3, 2016, p. 1.

      52 Jantawong, J. and Deelertpaiboon, C. (2018) Automatic Landing Control Based on GPS for Fixed‐Wing Aircraft. 2018 15th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI‐CON), pp. 313–316.

      53 Jayathunga, S., Owari, T. and Tsuyuki, S. (2018) The use of fixed–wing UAV photogrammetry with LiDAR DTM to estimate merchantable volume and carbon stock in living biomass over a mixed conifer–broadleaf forest. International Journal of Applied Earth Observations & Geoinformation, 73, 767–777.

      54 Jensen, J.R. and Cowen, D.C. (1999) Remote sensing of urban/suburban infrastructure and socio‐economic attributes. Photogrammetric Engineering & Remote Sensing, 65, 611–622.

      55 Joshi, A., Tripathi, A. and Ponnalgu, R.N. (2019) Modelling and Design of a Hybrid Aerial Vehicle Combining VTOL Capabilities with Fixed Wing Aircraft. 2019 6th International Conference on Instrumentation, Control, and Automation (ICA), pp. 47–51.

      56 Kislik, C., Dronova, I. and Kelly, M. (2018) UAVs in support of algal bloom research: a review of current applications and future opportunities. Drones, 2(4), 35.

      57 Kit, O., Lüdeke, M. and Reckien, D. (2012) Texture‐based identification of urban slums in Hyderabad, India using remote sensing data. Applied Geography, 32(2), 660–667.

      58 Kršák, B., Blišťan, P., Pauliková, A. et al. (2016) Use of low‐cost UAV photogrammetry to analyze the accuracy of a digital elevation model in a case study. Measurement, 91, 276–287.

      59 Küng, O., Strecha, C., Fua, P. et al. (2011) Simplified building models extraction from ultra‐light UAV imagery. ISPRS ‐ International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 3822, 217–222.

      60 Lavecchia, F., Guerra, M. and Galantucci, L. (2017) The influence of software algorithms on photogrammetric micro‐feature measurement's uncertainty. International Journal of Advanced Manufacturing Technology, 93 (9–12), 3991–4005.

      61 Li, C., Jin, W., Li, D. and Xi, Y. (2019) Vision‐aided Automatic Landing Design for Small Twin‐engine Fixed Wing UAV. 2019 IEEE 15th International Conference on Control and Automation (ICCA), Control and Automation (ICCA), 2019 IEEE 15th International Conference on, pp. 435–440.

      62 Lin, Z., Castano, L., Mortimer, E. and Xu, H. (2020) Fast 3D collision avoidance algorithm for fixed wing UAS. Journal of Intelligent & Robotic Systems, 97(3), 577–604.

      63 Liu, Y., Zheng, X., Ai, G., Zhang, Y. and Zuo, Y. (2018) Generating a high‐precision true digital orthophoto map based on UAV images. ISPRS International Journal of Geo‐Information, 7(9), 333.

      64 Lowe, D.G. (2004) Distinctive image features from scale‐invariant keypoints. International Journal of Computer Vision, 60(2), 91–110.

      65 Mazur, A.M. and Domanski, R. (2019) Hybrid energy systems in unmanned aerial vehicles. Aircraft Engineering & Aerospace Technology, 91 (5), 736–746.

      66 Mesas‐Carrascosa, F., García, M.D.N., de Larriva, J.E.M. and García‐Ferrer, A. (2016) An analysis of the influence of flight parameters in the generation of unmanned aerial vehicle (UAV) orthomosaicks to survey archaeological areas. Sensors (14248220), 16 (11), 1838.

      67 Morris, R. and Thurston, G. (2015). Registration and Marking Requirements for Small Unmanned Aircraft. Technical Report RIN 2120‐AK82, Federal Aviation Administration.

      68 Nascimento, T.P. and Saska, M. (2019) Position and attitude control of multi‐rotor aerial vehicles: a survey. Annual Reviews in Control, 48, 129–146.

      69 Nex, F. and Remondino, F. (2014) UAV for 3D mapping applications: a review. Applied Geomatics, 6(1), 1–15.

      70 Noor, N.M., Abdullah, A. and Hashim, M. (2018) Remote Sensing UAV/Drones and Its Applications for Urban Areas: A Review. IOP Conference Series: Earth and Environmental Science, p. 012003.

      71 Norouzi Ghazbi, S., Aghli, Y., Alimohammadi, M. and Akbari, A.A. (2016) Quadrotors unmanned aerial vehicles: a review. International Journal on Smart Sensing & Intelligent Systems, 9(1), 309–333.

      72 Pajares, G. (2015) Overview and current status of remote sensing applications based on unmanned aerial vehicles (UAVs). Photogrammetric Engineering & Remote Sensing, 81(4), 281–330.

      73 Panagiotou, P. and Yakinthos, K. (2020) Aerodynamic efficiency and performance enhancement of fixed‐wing UAVs. Aerospace Science & Technology, 99, 105575.

      74 Pannozzi, P., Valavanis, K.P., Rutherford, M.J. et al. (2019) Urban Monitoring of Smart Communities Using UAS. 2019 International Conference on Unmanned Aircraft Systems (ICUAS), IEEE, Atlanta, USA, June 11–14, 2019, p. 866.

      75 Pepe, M., Fregonese, L. and Scaioni, M. (2018) Planning airborne photogrammetry and remote‐sensing missions with modern platforms and sensors. European Journal of Remote Sensing, 51(1), 412–436.

      76 Plioutsias, A., Karanikas, N. and Chatzimihailidou, M.M. (2018) Hazard analysis and safety requirements for small drone operations: to what extent do popular drones embed safety? Risk Analysis: An International Journal, 38(3), 562–584.

      77 Prakash, A. (2000) Thermal remote sensing: concepts, issues and applications. International Archives of Photogrammetry & Remote Sensing, 33, 239–243.

      78 Rakha, T. and Gorodetsky, A. (2018) Review of Unmanned Aerial System (UAS) applications in the built environment: towards automated building inspection procedures using drones. Automation in Construction, 93, 252–264.

      79 Ramasamy, S., Sabatini, R., Gardi, A. and Liu, J. (2016) LIDAR obstacle warning and avoidance system for unmanned aerial vehicle sense‐and‐avoid. Aerospace Science & Technology, 55, 344–358.

      80 Remondino, СКАЧАТЬ