Urban Remote Sensing. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Urban Remote Sensing - Группа авторов страница 41

Название: Urban Remote Sensing

Автор: Группа авторов

Издательство: John Wiley & Sons Limited

Жанр: География

Серия:

isbn: 9781119625858

isbn:

СКАЧАТЬ

      3.4.2 BUILDING INSPECTION

      The built environments we live in are constantly aging and wearing down. Regular checking of rooftops is critical to identify wet insulation issues at an early stage and prolong the lifespan of building roofs. Heat transfer and air loss through windows, cracks, chimneys are important causes of energy loss in residential buildings. Therefore, infrastructure inspection is necessary to maintain their energy efficiency and reduce further maintenance costs. UAS can capture thermal patterns with infrared cameras and generate 3D Computer‐aided Design (CAD) models, which can help to assess energy production and conservation of urban structures (Rakha and Gorodetsky, 2018). Some efforts have been made to advance UAS applications in building inspections. For example, Zhang et al. (2015) developed a relative thermographic calibration algorithm and automatic thermal anomaly detection methods. Besada et al. (2018) demonstrated an automated flight process achieved with a Mission Definition System for infrastructure inspections using UAS. However, there are still some issues concerning the UAS applications in building energy audits. For example, better GPS accuracy is needed. The accuracy of UAS and its ability to avoid obstacles relies heavily on the accuracy of the onboard GPS and Inertial Navigation System (INS) (Steffen and Förstner, 2008). There are no conclusive strategies for path planning or inspection distance optimization for the UAS‐based building audit, which points toward a new research direction (Rakha and Gorodetsky, 2018).

      3.4.3 PHYSICAL DISORDER DETECTION

      The physical characteristics of neighborhoods are important information for analyzing the effects of place on social problems. However, this information is usually unavailable or measured with aggregated secondary data that are only suitable for large‐scale investigations. Grubesic et al. (2018) used UAS to evaluate hyper‐local information on physical disorders like litter, unkempt lots, and building decay. They conducted two low‐altitude missions with an Ebee, a fix‐wing model from senseFly, at 65 m flying height, 60% lateral overlap, and 75% longitudinal overlap to survey two neighborhoods in Phoenix, Arizona. In each neighborhood, a total of 91.96 and 45.18 acres were covered with 382 and 217 RGB images, respectively. The resulting UAS imagery is much sharper than common medium‐resolution satellite imagery and makes it easier to discern small objects like air‐conditioning units. Compared to omnidirectional street imagery, UAS imagery is not influenced by temporal mismatches or blocked sight caused by depth perspective. The UAS approach also turned out to be more economical than the traditional way to collect hyper‐local data through systematic social observation (SSO) or neighborhood audits.

      3.4.4 SMART CITIES

Photos depict (a) an aerial view of the Urban Recreation Complex. (b) A flight plan design for UAS data collection.

      To create the desired 3D data outputs (namely, point cloud and a textured model) for this project the user‐defined flight parameters for the flight plan included a flight altitude of 35 m above ground level (AGL), a frontal image overlap of 85%, and side image overlap of 80%, and an oblique camera orientation of 65° (i.e. 90° is nadir orientation). The flight altitude of 35 m allowed the UAS to fly the double‐grid pattern at a low altitude, leading to high‐resolution images to be collected. As previously mentioned, these flight parameters are highly contingent on the specific context that a UAS operator is conducting flights for so their settings can vary from one project to another. For this urban recreation complex mapping project, there were no obstacles of concern above approximately 30 m AGL, so 35 m was a safe flying altitude that would also allow imagery to be acquired at very high resolution. The benefits of this low flight altitude can be seen in the increased quality of resolution in the aerial images, thus leading to a much finer resolution СКАЧАТЬ