Urban Remote Sensing. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Urban Remote Sensing - Группа авторов страница 39

Название: Urban Remote Sensing

Автор: Группа авторов

Издательство: John Wiley & Sons Limited

Жанр: География

Серия:

isbn: 9781119625858

isbn:

СКАЧАТЬ operations, and data processing.

      3.3.1 MISSION PLANNING (PREFLIGHT)

      When using a UAS for remote sensing purposes, operators need to firstly think about their specific project and what their goals are. Because there is no one‐size‐fits‐all approach to using UAS for remote sensing, operators need to situate the technology within the intended project or application. This can often be accomplished by addressing several questions: What am I trying to address in my project? What type of data can a UAS provide to my project? Do I need a particular platform or sensor to acquire that type of data? Where will I be collecting my data (i.e. environmental context)? What potential obstacles could prevent me from acquiring that data? Are these potential obstacles physical (tall buildings, trees, powerlines), regulatory (illegal to fly in that location, limitations on altitude), or a combination of the two? By answering these questions, operators will be able to put together a cohesive and well‐structured mission plan for their project. While there are various ways one can conceptualize a mission plan, Pepe et al. (2018) proposed a useful mission planning framework consisting of several integral components, such as determining the suitable UAS platform and sensor for the application, selecting a suitable flight plan design, and analyzing the user‐determined factors that can impact the flight process. The first component, a discussion of the various types of UAS platforms and sensors, was already discussed in Section 3.2, and here we will focus on the last two components: flight design and flight factors.

      Source: Based on Torres et al. (2018).

      Another important factor for autonomous flight plan design is image acquisition altitude. The altitude that a UAS flies at during a data collection mission can dramatically affect the amount of time it takes to complete a mission, the amount of area that can be covered, and the resolution of its sensors. Lower flight altitudes allow the UAS to collect data with higher resolution but require longer flight times as the UAS must fly much further to maintain the minimum image overlap required for reconstruction. Inversely, if a UAS is flown at a higher altitude, the spatial resolution of the output imagery becomes coarser, but the flights take less time to cover the same amount of area. According to Agüera‐Vega et al. (2017), the accuracy of DSMs and orthophotos derived from UAS images tends to improve with lower acquisition altitudes. But it takes much longer to complete the image acquisition and the output data are more computationally intensive to process. In addition, there can be physical limitations affecting the decision of appropriate flight altitudes for a project. If there are tall buildings (such as in an urban setting), the flights must be flown high enough to not collide during the mapping mission. Changes in terrain can also affect the flight altitude because the terrain elevation can change in relation to the UAS position when initially taking off.

      The third important factor influencing the quality of UAS data outputs is sensor orientation. During the early mission planning process when an operator is thinking about the intended application and goals for a project, a simple decision to be made is whether 3D data outputs are needed. This is important because image orientation can affect the quality of a 3D reconstruction significantly. It is common for operators to utilize nadir image orientations for most mapping purposes but image datasets acquired at oblique angles generally work better for constructing 3D datasets, such as point clouds, textured models, and DEMs (Küng et al., 2011; Chiabrando et al., 2017; Boonpook et al., 2018). The inclusion of oblique image orientation techniques allows the facades of tall features to be better captured in the image dataset, thus resulting in a more thoroughly captured dataset. However, capturing a complete oblique orientation dataset takes much longer than acquiring a nadir orientation dataset and is also more computationally intensive. Due to the angled perspective of oblique image datasets, double‐grid flight patterns are commonly used to capture all four sides of any features present. Since image overlap is crucial for reconstructing the image datasets into 2D and 3D data outputs, extra attention must be paid by the UAS operator when designing a flight plan with image orientations other than nadir.

      3.3.2 FLIGHT OPERATIONS (IN‐FLIGHT)