The Variation of Animals and Plants Under Domestication, Volume II (of 2). Darwin Charles
Чтение книги онлайн.

Читать онлайн книгу The Variation of Animals and Plants Under Domestication, Volume II (of 2) - Darwin Charles страница 29

СКАЧАТЬ case, though somewhat different, may be here given, as it is highly remarkable, and is established on excellent evidence. Kölreuter minutely describes five varieties of the common tobacco,236 which were reciprocally crossed, and the offspring were intermediate in character and as fertile as their parents: from this fact Kölreuter inferred that they are really varieties; and no one, as far as I can discover, seems to have doubted that such is the case. He also crossed reciprocally these five varieties with N. glutinosa, and they yielded very sterile hybrids; but those raised from the var. perennis, whether used as the father or mother plant, were not so sterile as the hybrids from the four other varieties.237 So that the sexual capacity of this one variety has certainly been in some degree modified, so as to approach in nature that of N. glutinosa.238

      These facts with respect to plants show that in some few cases certain varieties have had their sexual powers so far modified, that they cross together less readily and yield less seed than other varieties of the same species. We shall presently see that the sexual functions of most animals and plants are eminently liable to be affected by the conditions of life to which they are exposed; and hereafter we shall briefly discuss the conjoint bearing of this and other facts on the difference in fertility between crossed varieties and crossed species.

Domestication eliminates the tendency to Sterility which is general with Species when crossed

      This hypothesis was first propounded by Pallas,239 and has been adopted by several authors. I can find hardly any direct facts in its support; but unfortunately no one has compared, in the case of either animals or plants, the fertility of anciently domesticated varieties, when crossed with a distinct species, with that of the wild parent-species when similarly crossed. No one has compared, for instance, the fertility of Gallus bankiva and of the domesticated fowl, when crossed with a distinct species of Gallus or Phasianus; and the experiment would in all cases be surrounded by many difficulties. Dureau de la Malle, who has so closely studied classical literature, states240 that in the time of the Romans the common mule was produced with more difficulty than at the present day; but whether this statement may be trusted I know not. A much more important, though somewhat different, case is given by M. Groenland,241 namely, that plants, known from their intermediate character and sterility to be hybrids between Ægilops and wheat, have perpetuated themselves under culture since 1857, with a rapid but varying increase of fertility in each generation. In the fourth generation the plants, still retaining their intermediate character, had become as fertile as common cultivated wheat.

      The indirect evidence in favour of the Pallasian doctrine appears to me to be extremely strong. In the earlier chapters I have attempted to show that our various breeds of dogs are descended from several wild species; and this probably is the case with sheep. There can no longer be any doubt that the Zebu or humped Indian ox belongs to a distinct species from European cattle: the latter, moreover, are descended from two or three forms, which may be called either species or wild races, but which co-existed in a state of nature and kept distinct. We have good evidence that our domesticated pigs belong to at least two specific types, S. scrofa and Indica, which probably lived together in a wild state in South-eastern Europe. Now, a widely-extended analogy leads to the belief that if these several allied species, in the wild state or when first reclaimed, had been crossed, they would have exhibited, both in their first unions and in their hybrid offspring, some degree of sterility. Nevertheless the several domesticated races descended from them are now all, as far as can be ascertained, perfectly fertile together. If this reasoning be trustworthy, and it is apparently sound, we must admit the Pallasian doctrine that long-continued domestication tends to eliminate that sterility which is natural to species when crossed in their aboriginal state.

On increased Fertility from Domestication and Cultivation

      Increased fertility from domestication, without any reference to crossing, may be here briefly considered. This subject bears indirectly on two or three points connected with the modification of organic beings. As Buffon long ago remarked,242 domestic animals breed oftener in the year and produce more young at a birth than wild animals of the same species; they, also, sometimes breed at an earlier age. The case would hardly have deserved further notice, had not some authors lately attempted to show that fertility increases and decreases in an inverse ratio with the amount of food. This strange doctrine has apparently arisen from individual animals when supplied with an inordinate quantity of food, and from plants of many kinds when grown on excessively rich soil, as on a dunghill, becoming sterile; but to this latter point I shall have occasion presently to return. With hardly an exception, our domesticated animals, which have long been habituated to a regular and copious supply of food, without the labour of searching for it, are more fertile than the corresponding wild animals. It is notorious how frequently cats and dogs breed, and how many young they produce at a birth. The wild rabbit is said generally to breed four times yearly, and to produce from four to eight young; the tame rabbit breeds six or seven times yearly, and produces from four to eleven young. The ferret, though generally so closely confined, is more prolific than its supposed wild prototype. The wild sow is remarkably prolific, for she often breeds twice in the year, and produces from four to eight and sometimes even twelve young at a birth; but the domestic sow regularly breeds twice a year, and would breed oftener if permitted; and a sow that produces less than eight at a birth "is worth little, and the sooner she is fattened for the butcher the better." The amount of food affects the fertility even of the same individual: thus sheep, which on mountains never produce more than one lamb at a birth, when brought down to lowland pastures frequently bear twins. This difference apparently is not due to the cold of the higher land, for sheep and other domestic animals are said to be extremely prolific in Lapland. Hard living, also, retards the period at which animals conceive; for it has been found disadvantageous in the northern islands of Scotland to allow cows to bear calves before they are four years old.243

      Birds offer still better evidence of increased fertility from domestication: the hen of the wild Gallus bankiva lays from six to ten eggs, a number which would be thought nothing of with the domestic hen. The wild duck lays from five to ten eggs; the tame one in the course of the year from eighty to one hundred. The wild grey-lag goose lays from five to eight eggs; the tame from thirteen to eighteen, and she lays a second time; as Mr. Dixon has remarked, "high-feeding, care, and moderate warmth induce a habit of prolificacy which becomes in some measure hereditary." Whether the semi-domesticated dovecot pigeon is more fertile than the wild rock-pigeon C. livia, I know not; but the more thoroughly domesticated breeds are nearly twice as fertile as dovecots: the latter, however, when caged and highly fed, become equally fertile with house pigeons. The peahen alone of domesticated birds is rather more fertile, according to some accounts, when wild in its native Indian home, than when domesticated in Europe and exposed to our much colder climate.244

      With respect to plants, no one would expect wheat to tiller more, and each ear to produce more grain, in poor than in rich soil; or to get in poor soil a heavy crop of peas or beans. Seeds vary so much in number that it is difficult to estimate them; but on comparing beds of carrots saved for seed in a nursery garden with wild plants, the former seemed to produce about twice as much seed. Cultivated cabbages yielded thrice as many pods by measure as wild cabbages from the rocks of South Wales. The excess of berries produced by the cultivated Asparagus in comparison with the wild plant is enormous. No doubt many highly cultivated plants, such as pears, pineapples, bananas, sugar-cane, &c., are nearly or quite sterile; and I am inclined to attribute this sterility to excess of food and to other unnatural conditions; but to this subject I shall presently recur.

      In some cases, as with the pig, rabbit, &c., and with those plants which are valued for their seed, the direct selection of the more fertile individuals has probably much increased their fertility; and in all cases this may have occurred СКАЧАТЬ



<p>236</p>

'Zweite Forts.,' s. 53, namely, Nicotiana major vulgaris; (2) perennis; (3) Transylvanica; (4) a sub-var. of the last; (5) major latifol. fl. alb.

<p>237</p>

Kölreuter was so much struck with this fact that he suspected that a little pollen of N. glutinosa in one of his experiments might have accidentally got mingled with that of var. perennis, and thus aided its fertilising power. But we now know conclusively from Gärtner ('Bastarderz.,' s. 34, 431) that two kinds of pollen never act conjointly on a third species; still less will the pollen of a distinct species, mingled with a plant's own pollen, if the latter be present in sufficient quantity, have any effect. The sole effect of mingling two kinds of pollen is to produce in the same capsule seeds which yield plants, some taking after the one and some after the other parent.

<p>238</p>

Mr. Scott has made some observations on the absolute sterility of a purple and white primrose (Primula vulgaris) when fertilised by pollen from the primrose ('Journal of Proc. of Linn. Soc.,' vol. viii., 1864, p. 98); but these observations require confirmation. I raised a number of purple-flowered long-styled seedlings from seed kindly sent me by Mr. Scott, and, though they were all some degree sterile, they were much more fertile with pollen taken from the common primrose than with their own pollen. Mr. Scott has likewise described a red equal-styled cowslip (P. veris, idem, p. 106), which was found by him to be highly sterile when crossed with the common cowslip; but this was not the case with several equal-styled red seedlings raised by me from his plant. This variety of the cowslip presents the remarkable peculiarity of combining male organs in every respect like those of the short-styled form, with female organs resembling in function and partly in structure those of the long-styled form; so that we have the singular anomaly of the two forms combined in the same flower. Hence it is not surprising that these flowers should be spontaneously self-infertile in a high degree.

<p>239</p>

'Act. Acad. St. Petersburg,' 1780, part ii., pp. 84, 100.

<p>240</p>

'Annales des Sc. Nat.,' tom. xxi. (1st series), p. 61.

<p>241</p>

'Bull. Bot. Soc. de France,' Dec. 27th, 1861, tom. viii. p. 612.

<p>242</p>

Quoted by Isid. Geoffroy St. Hilaire, 'Hist. Naturelle Générale,' tom. iii. p. 476. Since this MS. has been sent to press a full discussion on the present subject has appeared in Mr. Herbert Spencer's 'Principles of Biology,' vol. ii. 1867, p. 457 et seq.

<p>243</p>

For cats and dogs, &c., see Bellingeri, in 'Annal. des Sc. Nat.,' 2nd series, Zoolog., tom. xii. p. 155. For ferrets, Bechstein, 'Naturgeschichte Deutschlands,' Band i., 1801, s. 786, 795. For rabbits, ditto, s. 1123, 1131; and Bronn's 'Geschichte der Natur,' B. ii. s. 99. For mountain sheep, ditto, s. 102. For the fertility of the wild sow, see Bechstein's 'Naturgesch. Deutschlands,' B. i., 1801, s. 534; for the domestic pig, Sidney's edit. of Youatt on the Pig, 1860, p. 62. With respect to Lapland, see Acerbi's 'Travels to the North Cape,' Eng. translat., vol. ii. p. 222. About the Highland cows, see Hogg on Sheep, p. 263.

<p>244</p>

For the eggs of Gallus bankiva, see Blyth, in 'Annals and Mag. of Nat. Hist., 2nd series, vol. i., 1848, p. 456. For wild and tame ducks, Macgillivray, 'British Birds,' vol. v. p. 37; and 'Die Enten,' s. 87. For wild geese, L. Lloyd, 'Scandinavian Adventures,' vol. ii. 1854, p. 413; and for tame geese, 'Ornamental Poultry,' by Rev. E. S. Dixon, p. 139. On the breeding of pigeons, Pistor, 'Das Ganze der Taubenzucht,' 1831, s. 46; and Boitard and Corbié, 'Les Pigeons,' p. 158. With respect to peacocks, according to Temminck ('Hist. Nat. Gén. des Pigeons,' &c., 1813, tom. ii. p. 41), the hen lays in India even as many as twenty eggs; but according to Jerdon and another writer (quoted in Tegetmeier's 'Poultry Book,' 1866, pp. 280, 282), she there lays only from four to nine or ten eggs: in England she is said, in the 'Poultry Book,' to lay five or six, but another writer says from eight to twelve eggs.