A History of Inventions, Discoveries, and Origins, Volume II (of 2). Johann Beckmann
Чтение книги онлайн.

Читать онлайн книгу A History of Inventions, Discoveries, and Origins, Volume II (of 2) - Johann Beckmann страница 20

СКАЧАТЬ it down with his left hand, he drew out very carefully with his right the paper that lay between the tin and the glass, over which weights were afterwards placed. This much at any rate is certain, that the method of covering with tin foil was known at Murano so early as the sixteenth century200, and therefore it is much older than J. M. Hoffmann supposes. To conclude, whether this ingenious invention belongs to the Venetians, as several later, and particularly Italian, writers assert, I can neither prove nor contradict; but it is well known that till about the end of the seventeenth century their mirrors were sold all over Europe and in both the Indies. After that period the glass-houses in other countries were improved, and new ones established; and the discovery made in France, that glass, like metal, could be cast into much larger plates than had been before prepared by blowing and rolling, was in more than one respect prejudicial to the sale of those made at Venice.

      So early as the year 1634, attempts were made in France to establish glass-houses for manufacturing mirrors, and Eustache Grandmont obtained a patent for that purpose; but his undertaking was not attended with success. As Colbert exerted himself very much to promote manufactures of every kind, Nicholas de Noyer proposed to make mirrors according to the Venetian method. This plan was adopted by Charles Rivière, sieur du Freni, valet-de-chambre to the king; and having procured the royal permission, he sold it afterwards for a large sum to De Noyer, who, in 1665, received a confirmation of the patent, and an advance of 12,000 livres for four years, on condition of his procuring workmen from Venice, who, after serving eight years in the kingdom, were to be naturalized. De Noyer was joined by several more, who entered into partnership with him, and particularly by one Poquelin, who had hitherto carried on the greatest trade in Venetian mirrors, and who engaged workmen from Murano. The glass-houses were erected at the village of Tourlaville, near Cherbourg, in Lower Normandy. After the death of Colbert, who was succeeded by Louvois, the charter of the company was in 1684 renewed for thirty years longer, and at that period Pierre de Bagneux was at the head of it.

      Scarcely had five years of this period elapsed, when, in 1688, Abraham Thevart made a proposal to the court for casting glass mirrors of a much larger size than any ever before made. This plan, after an accurate investigation, was approved; and in the same year he received the royal permission to use his invention for thirty years, but it was not registered till 1693 or 1694. The first plates were cast at Paris, and astonished every artist who saw them. They were eighty-four inches in height, and fifty in breadth. In order to lessen the excessive expense, the glass-houses were erected at St. Gobin, in Picardy; and to prevent all dispute with the old privileged company, Thevart was expressly bound to make plates at least sixty inches in length and forty in breadth, whereas the largest of those made before had never exceeded forty-five or fifty inches in length. On the other hand, the old company were allowed to make plates of a smaller size, and were prohibited from employing any of the instruments or apparatus invented by Thevart. These however had not been so accurately defined as to remove all cause of litigation between the companies, and for that reason permission was at length granted, in 1695, for both to be united into one, under the inspection of François Plastrier, to whom the king, in 1699, sold the palace of St. Gobin. After this they declined so rapidly, that in 1701 they were not able to pay their debts, and were obliged to abandon several of the furnaces. To add to their misfortune, some of the workmen whom they had discharged retired to other countries, which were already jealous of the French invention, and wished to turn it to their advantage. The French writers assert that their attempts never succeeded, and that most of the workmen returned again to France, when a new company was formed in 1702, under the management of Antoine d’Agincourt, who by prudent œconomy improved the establishment, so as to render the profit very considerable. At present mirrors are cast as well as blown, both at St. Gobin and at Cherbourg; and in 1758 the price of them was greatly reduced, in order probably to weaken the competition of the foreign glass-houses, among which there are many not inferior to the French.

      This short history of the glass manufactories in France is collected from Savary201 and Expilly202. A more particular account perhaps may be expected of the inventor, of his first experiments, and of their success; but notwithstanding a strict search, I have not been able to find any further information on the subject. We are told only that his name was sieur Abraham Thevart, though the historians who record that circumstance have filled their pages with uninteresting anecdotes, and even with the vices of many of the courtiers of the same period.

      The principal benefit which has arisen to the art from this invention, properly is, that much larger mirrors can be obtained than formerly; for when attempts were made to blow very large plates, they were always too thin. Casting, however, besides great expense in apparatus203, requires so many expert workmen, and so tedious and severe labour, and is accompanied with so much danger, that it is only seldom that plates of an extraordinary size succeed, and the greater part of them must be cut into smaller plates which might have been blown. Those cast are never so even and smooth as those that have been blown; they require therefore a great deal of polishing, and on that account must be very thick. The monstrous mass requisite for a mirror of the largest size, stands ready melted in a very frail red-hot earthen pot, which is taken from the furnace and placed upon an iron plate, strongly heated, that the mass may be cast upon it into a glass plate. The latter must then be speedily conveyed to the cooling-furnace, and if it be found free from faults, it is ground, polished and silvered; but the last part of the process is generally done at the place where a purchaser can be found for so expensive an article, in order that less loss may be sustained in case it should happen to break by the way.

      These great difficulties, which have excited the astonishment of every one who has seen the process, and that of finding sale for so expensive and magnificent wares, have obliged artists to return to the old method of blowing; and many have been so fortunate in improving this branch of manufacture, that plates are formed now by blowing, sixty-four Flemish inches in height and twenty-three in breadth, which it was impossible to make before but by casting.

      The mass of matter necessary for this purpose, weighing more than a hundred pounds, is by the workman blown into the shape of a large bag; it is then reduced to the form of a cylinder, and being cut up, is, by stretching, rolling it with a smooth iron, and other means, transformed into an even plane.

      [All but the very commonest mirrors are now made of plate-glass; which is also used to a great extent for window-panes, and is manufactured by casting, rolling and polishing. The enormous plates of glass which are seen in many of the large shops of this city are well-calculated to excite the astonishment of those who are not yet aware of the late improvements in this branch of manufacture. An idea of what may be accomplished by blowing was given in 1845, at the Exhibition at Vienna, where a blown glass 7 feet in length and 3½ in breadth was exhibited; and which was of sufficient thickness to admit of polishing. Nevertheless, the casting of plate-glass is now managed with such comparative ease, that there appears to be no limit to the size to which the plates can be brought, so that the blowing of large panes of glass is given up in this country. Private houses may now be seen decorated with single sheets of glass upwards of 20 feet in height and 10 in width.

      A patent for a very ingenious process for silvering glass was taken out in November 1843 by Mr. Drayton. It consists in depositing silver, from a solution, upon glass, by deoxidizing the oxide of silver in solution, so that the precipitate will adhere to the glass, without the latter having been coated with metallic or other substances. This is effected by mixing 1 oz. of coarsely powdered nitrate of silver with ½ oz. of spirits of hartshorn and 2 oz. of water; after standing for 24 hours, the mixture is filtered (the deposit on the filter, which contains silver, being preserved), and an addition is made thereto of 3 oz. of spirit (by preference, spirit of wine) at 60° above proof, or naphtha; from 20 to 30 drops of oil of cassia are then added, and after remaining for about 6 hours longer, the solution is ready for use. The glass to be silvered must have a clean and polished surface; it is to be placed in a horizontal position, and a wall of putty formed around it, so that the solution may cover the surface of the glass to the depth of from ⅛th to ¼th of an СКАЧАТЬ



<p>200</p>

Wecker, in his book De Secretis, lib. x. p. 572, seems to say, that one must lay the saturated tin leaf so carefully on the glass plate, that no air can settle between them. According to Garzoni, the tin leaf is spread out on a smooth stone table, and after it has been rubbed over with quicksilver, the glass is placed above it.

<p>201</p>

Tome iii. p. 87, art. Glace.

<p>202</p>

Dict. Géog. de la France. Amst. 1762, fol. v. pp. 415, 672.

<p>203</p>

A furnace for casting large glass plates, before it is fit to be set at work, cost, it is said, 3500l. It seldom lasts above three years, and even in that time it must be repaired every six months. It takes six months to rebuild it, and three months to repair it. The melting-pots are as big as large hogsheads, and contain above 200 cwt. of metal. If one of them burst in the furnace, the loss of the matter and time amounts to 250l.– Trans.