Автор: Стивен Строгац
Издательство: Манн, Иванов и Фербер
Жанр: Математика
isbn: 978-500057-008-1
isbn:
Вскоре, возможно, даже Хамфри поймет, что теперь он всегда может производить подсчет.
Однако, несмотря на столь бесконечную перспективу, наше творчество всегда имеет какие-то ограничения. Мы можем решить, что подразумеваем под 6 и +, но как только это сделаем, результаты выражений, подобных 6 + 6, окажутся вне нашего контроля. Здесь логика не оставит нам выбора. В этом смысле математика всегда включает в себя как изобретение, так и открытие: мы изобретаем концепции, но открываем их последствия. Как станет ясно из следующих глав, в математике наша свобода заключается в возможности задавать вопросы и настойчиво искать на них ответы, однако не изобретая их самостоятельно.
2. Каменная арифметика
Как и любое явление в жизни, арифметика имеет две стороны: формальную и занимательную (или игровую).
Формальную часть мы изучали в школе. Там нам объясняли, как работать со столбцами чисел, складывая и вычитая их, как перелопачивать их при выполнении расчетов в электронных таблицах при заполнении налоговых деклараций и подготовки годовых отчетов. Эта сторона арифметики кажется многим важной с практической точки зрения, но совершенно безрадостной.
С занимательной стороной арифметики можно познакомиться только в процессе изучения высшей математики{3}. Тем не менее, она так же естественна, как и любопытство ребенка{4}.
В эссе «Плач математика» Пол Локхарт предлагает изучать числа на более конкретных, чем обычно, примерах: он просит, чтобы мы представили их в виде некоторого количества камней. Например, число 6 соответствует вот такому набору камешков:
Вы вряд ли увидите тут что-то необычное. Так оно и есть. Пока мы не приступим к манипуляциям с числами, они выглядят примерно одинаково. Игра начинается, когда мы получаем задание.
Например, давайте посмотрим на наборы, в которых есть от 1 до 10 камней, и попробуем сложить из них квадраты. Это можно сделать только с двумя наборами – из 4 и 9 камней, поскольку 4 = 2 × 2 и 9 = 3 × 3. Мы получаем эти числа путем возведения в квадрат некоего другого числа (то есть раскладывая камни в виде квадрата).
Вот задача, имеющая большее число решений: надо узнать, из каких наборов получится прямоугольник, если разложить камни в два ряда с равным количеством элементов. Здесь подойдут наборы из 2, 4, 6, 8 или 10 камней; число должно быть четным. Если мы попробуем разложить в два ряда оставшиеся наборы с нечетным количеством камней, то у нас неизменно будет СКАЧАТЬ
3
Написанием данной главы я во многом обязан двум замечательным книгам: полемическому эссе P. Lockhart, A Mathematician’s Lament (Bellevue Literary Press, 2009) и роману Y. Ogawa, The Housekeeper and the Professor (Picador, 2009).
4
Молодым читателям, которые хотят изучать числа и их структуры, см. H. M. Enzensberger, The Number Devil (Holt Paperbacks, 2000).