Название: Натуральные числа. Этюды, вариации, упражнения
Автор: Владимир Валентинович Трошин
Издательство: ЛитРес: Черновики
Жанр: Математика
isbn:
isbn:
Всякое натуральное число – либо квадратное, либо сумма двух, трёх или четырёх квадратных чисел.
Всякое натуральное число – либо пятиугольное, либо сумма от двух до пяти пятиугольных чисел; и т.д.
Полное доказательство этой теоремы сумел дать Коши в 1813 году. Оцените промежуток времени, потребовавшийся для доказательства одной теоремы: с 1637 до 1813 года.
Критерий – цифровое выражение числа
Последние годы в занимательной математике много пишется о числах, имеющих специфическое представление в виде цифр. В первую очередь речь идет о числа – палиндромах. Это понятие пришло в математику из языка, где палиндром (от греч. palindromos – бегущий обратно), слово, фраза или стих, которые могут читаться (по буквам или по словам) спереди назад и с конца вперед, давая одинаковый смысл. В русском языке палиндромами являются, например, такие слова: довод, доход, заказ, радар и другие. Некоторые палиндромы, если их написать печатными буквами, не только читаются одинаково слева направо и наоборот, но обладают осью симметрии, например поп, потоп, топот. Палиндромы известны во многих языках (например, gig (кабриолет), eve (канун), level (уровень) – в английском), а их история восходит к временам незапамятным. Чтобы не нарушать принятый в книге принцип давать классам чисел название в виде прилагательного, назовем такие числа палинромическими числами.
В математике к понятию палиндрома нужен иной подход, нежели в языкознании, потому что, в отличие от слова, любое число, написанное произвольным набором цифр, имеет право на существование, например, 1234567890987654321 – вполне реальное число. А что в нем еще интересного, в чем его исключительность? Содержательная сторона, изюминка идеи отражения здесь отсутствует, посмотришь на это число, и скажешь: «Ну, и что?». Можно поставить вопрос так: найти квадраты целых чисел, которые неизменно читаются как слева направо, так и наоборот. Некоторые из них найти легко: 112=121, 1112=12321, 11112=1234321. Все получившиеся числа палиндромы, и данное правило применимо к любому числу единиц, не превосходящему девяти. Есть и другие случаи, но их найти труднее, например, 2642=69696, 8362=698896, 22852=5221225. Одним вопросом намечено целое направление для поиска числовых палиндромов с определенным смыслом. Есть палиндромы и среди кубов, например 113=1331, причем в большинстве случаев, если куб – палиндром, то и кубический корень из него – тоже палиндром. Поиск СКАЧАТЬ