Interpretacja EKG. Kurs podstawowy. Отсутствует
Чтение книги онлайн.

Читать онлайн книгу Interpretacja EKG. Kurs podstawowy - Отсутствует страница 3

Название: Interpretacja EKG. Kurs podstawowy

Автор: Отсутствует

Издательство: OSDW Azymut

Жанр: Медицина

Серия:

isbn: 978-83-200-5528-3

isbn:

СКАЧАТЬ odrębnie omówiono kanałopatie i EKG u chorych z wszczepionym urządzeniem do elektroterapii), niedokrwienia i zawału serca oraz przerostu mięśnia sercowego. Na końcu umieszczono quiz z 10 zapisami EKG do oceny.

      Po czwarte, nie zapomniano o posiadającej odrębności diagnostyce elektrokardiograficznej u dzieci. Dość rozbudowany rozdział przygotowały chyba najbardziej doświadczone i kompetentne w kraju osoby.

      Po piąte, Autorzy książki to rzeczywiście wysokiej klasy eksperci. Co ważne, reprezentują różne ośrodki kardiologiczne w kraju, a mimo to uzyskano konsensus.

      Podsumowując, należy mieć nadzieję, że Czytelnicy z wielką radością przyjmą to dzieło. Zachęcam do lektury.

prof. dr hab. n. med. Maria Trusz-Gluza

      1

      Zjawiska elektryczne zachodzące w sercu

      Krzysztof Szydło

      Aby poznać i zrozumieć elektrofizjologię serca oraz mechanizmy powstawania zaburzeń rytmu i przewodzenia, trzeba posiadać wiedzę na temat budowy anatomicznej układu bodźcotwórczo-przewodzącego, a także najważniejszych zasad fizjologicznych będących podłożem procesów elektrycznych serca.

      PODSTAWOWE INFORMACJE Z ANATOMII UKŁADU BODŹCOTWÓRCZO-PRZEWODZĄCEGO

      Węzeł zatokowy (zatokowo-przedsionkowy, węzeł s-a) jest fizjologicznym nadawcą rytmu. Jest to mała podnasierdziowa, wrzecionowata struktura zlokalizowana w bruździe granicznej pomiędzy żyłą główną górną a prawym przedsionkiem. Najczęściej unaczyniony jest przez prawą tętnicę wieńcową (55–60%), niekiedy przez tętnicę okalającą (40–45%). Jest bardzo bogato unerwiony zarówno przez włókna cholinergiczne, jak i pozazwojowe włókna adrenergiczne. Pierwsze powodują hiperpolaryzację błony komórkowej i zwolnienie procesu spoczynkowej depolaryzacji (zwolnienie rytmu serca – efekt chronotropowy ujemny), drugie odwrotnie, przyspieszając spoczynkową depolaryzację – przyspieszają rytm serca (efekt chronotropowo dodatni). Komórki węzła zatokowego charakteryzują się obecnością specyficznego kanału If, który jest aktywowany przez hiperpolaryzację błony komórkowej, i to on jest głównie odpowiedzialny za proces spoczynkowej depolaryzacji.

      Impuls, po opuszczeniu węzła zatokowego, wędruje w obrębie mięśniówki przedsionków oraz w kierunku węzła przedsionkowo-komorowego. Wyróżnia się szlak międzywęzłowy przedni, środkowy oraz tylny. Przewodzenie do lewego przedsionka odbywa się przez wiązkę Bachmanna. Te struktury nie różnią się histologicznie od mięśniówki przedsionków, jednak przewodzenie impulsów jest w nich szybsze.

      Następnie impuls dociera do łącza przedsionkowo-komorowego (A-V junction – łącze AV). Jest to struktura o dość skomplikowanej budowie, składająca się z części zbitej (właściwej części, nazywanej również węzłem AV) otoczonej komórkami strefy przejściowej. Przedłużeniem łącza przedsionkowo-komorowego jest pęczek Hisa. Podobnie jak węzeł zatokowy, łącze przedsionkowo-komorowe jest dobrze unaczynione, najczęściej przez prawą tętnicę wieńcową (85–90%), oraz bogato unerwione. Poprzez pobudzenie włókien przywspółczulnych dochodzi do hiperpolaryzacji komórek węzła, która powoduje zwolnienie przewodzenia impulsów (efekt dromotropowy ujemny). Natomiast pobudzenie adrenergiczne wywołuje efekt odwrotny i tym samym przyspieszenie przewodzenia (efekt dromotropowy dodatni). Należy pamiętać, że z elektrofizjologicznego punktu widzenia w łączu przedsionkowo-komorowym wyróżnia się dwie drogi przewodzenia – wolną i szybką. To bardzo ważne dla zrozumienia mechanizmu niektórych częstoskurczów, określanych jako częstoskurcze nawrotne. Drogi różnią się nie tylko szybkością przewodzenia, ale i czasem refrakcji (czasem, po którym mogą ponownie przewodzić impuls). Droga wolna ma krótką refrakcję, natomiast droga szybka – długą.

      Pęczek Hisa stanowi przedłużenie części zbitej węzła AV i przebiega w obrębie części błoniastej przegrody międzykomorowej. Ukrwiony jest zarówno przez tętnicę zstępującą przednią, jak i tylną, co zapewnia mu dość dużą odporność na niedokrwienie. Przejście części błoniastej przegrody międzykomorowej w część mięśniową to miejsce podziału pęczka Hisa na dwie odnogi: prawą i lewą. Prawa biegnie śródmięśniowo w kierunku koniuszka serca i dopiero tam dzieli się na mniejsze gałązki. Lewa odnoga ma natomiast bardzo skomplikowaną i zmienną topografię. Na użytek elektrokardiograficzny stosuje się wygodny podział na przednią i tylną wiązkę. Ostatnim elementem układu przewodzącego są włókna Purkinjego, będące końcowym fragmentem obu odnóg, wnikające odwsierdziowo w mięsień sercowy.

      CZYNNOŚĆ ELEKTRYCZNA KOMÓRKI – PODSTAWY ELEKTROFIZJOLOGII

      Podłożem aktywności elektrycznej komórki jest wędrówka jonów w poprzek błony komórkowej. Po obu stronach błony komórkowej stężenie jonów jest inne, co powoduje różnicę w ładunku elektrycznym, którą nazywamy potencjałem przezbłonowym. Jego zmiany stanowią bodziec zarówno do generowania pobudzenia, jak i jego dalszego rozprzestrzeniania się. Jony mogą przemieszczać się w poprzek błony „biernie” – siłą napędzającą jest wtedy różnica stężeń – lub „czynnie” – stężenia nie mają wtedy znaczenia, ale proces taki wymaga energii. Za całą tę wędrówkę jonów, czyli tworzenie prądów jonowych, odpowiedzialne są wyspecjalizowane kompleksy białkowe zlokalizowane w błonie komórkowej – pompy jonowe, wymienniki jonowe oraz kanały jonowe,. Tych kompleksów białkowych jest dość dużo, część prezentuje tabela 1.1. Pompy jonowe, wykorzystując energię z rozpadu ATP, transportują jony w sposób aktywny. Są to m.in. pompa sodowo-potasowa, pompa wapniowa siateczki sarkoplazmatycznej czy pompa wapniowa błony komórkowej kardiomiocyta. Wymienniki (m.in. wymiennik sód/wapń oraz wymiennik sód/proton) nie wymagają energii. Działają dzięki przezbłonowej różnicy stężeń jonów. Kanały jonowe najczęściej są wybiórcze – sodowe, potasowe, wapniowe lub chlorkowe – i różnią się mechanizmem aktywacji. Mogą być zależne od potencjału, czyli ich działanie zależy od potencjału komórki w danej chwili. Mogą być też zależne od aktywacji chemicznej, np. kanały potasowe aktywowane przez acetylocholinę. Dokładne omówienie tych zagadnień przekracza ramy niniejszego podręcznika. Tabela 1.1 pokazuje poziom skomplikowania tych procesów.

      Jednak należy pamiętać o jeszcze jednej bardzo ważnej właściwości kanałów jonowych. Kanał może być w stanie spoczynku, czyli pozostawać zamknięty, ale gotowy do czynności. Może też być aktywny. Na koniec ulega zamknięciu, ale nie może w dowolnej chwili rozpocząć ponownie swojego działania. Pozostaje przez jakiś czas nieaktywny, czym różni się od stanu wyjściowego. Ten czas nieaktywności, a właściwie niemożności do podjęcia działania, jest regulowany przez wiele czynników, najważniejszym z nich jest stopień depolaryzacji błony komórkowej. Kanały sodowe do swojej aktywacji wymagają niskiego potencjału (–80 mV i mniej), natomiast nie będą aktywne przy potencjale błony –50 mV. Jednak taki potencjał wystarczy, aby aktywować kanały wapniowe. Ze względu na te różnice niedokrwienie mięśnia sercowego lub defekty genetyczne powodujące podwyższenie wartości potencjału błonowego mogą zmieniać kształt potencjału czynnościowego, co może powodować zaburzenia zarówno w generowaniu impulsu, jak i jego przewodzeniu. Zmiany w wartości potencjału czynnościowego są również odpowiedzialne za niektóre mechanizmy arytmogenezy, czyli wzbudzania impulsów tam, gdzie jest to mało pożądane – pobudzenia dodatkowe.

      Błona komórkowa nie jest jednakowo przepuszczalna dla poszczególnych jonów, co powoduje powstawanie różnicy stężeń różnych jonów po obu jej stronach. To z kolei generuje różnicę СКАЧАТЬ