The Principles of Biology, Volume 1 (of 2). Spencer Herbert
Чтение книги онлайн.

Читать онлайн книгу The Principles of Biology, Volume 1 (of 2) - Spencer Herbert страница 18

Название: The Principles of Biology, Volume 1 (of 2)

Автор: Spencer Herbert

Издательство: Public Domain

Жанр: Философия

Серия:

isbn:

isbn:

СКАЧАТЬ in both differs from non-vital changes, we find that they differ in being not simple changes; in each case there are successive changes. The transformation of food into tissue involves mastication, deglutition, chymification, chylification, absorption, and those various actions gone through after the lacteal ducts have poured their contents into the blood. Carrying on an argument necessitates a long chain of states of consciousness; each implying a change of the preceding state. Inorganic changes, however, do not in any considerable degree exhibit this peculiarity. It is true that from meteorologic causes, inanimate objects are daily, sometimes hourly, undergoing modifications of temperature, of bulk, of hygrometric and electric condition. Not only, however, do these modifications lack that conspicuousness and that rapidity of succession which vital ones possess, but vital ones form an additional series. Living as well as not-living bodies are affected by atmospheric influences; and beyond the changes which these produce, living bodies exhibit other changes, more numerous and more marked. So that though organic change is not rigorously distinguished from inorganic change by presenting successive phases; yet vital change so greatly exceeds other change in this respect, that we may consider it as a distinctive character. Life, then, as thus roughly differentiated, may be regarded as change presenting successive phases; or otherwise, as a series of changes. And it should be observed, as a fact in harmony with this conception, that the higher the life the more conspicuous the variations. On comparing inferior with superior organisms, these last will be seen to display more rapid changes, or a more lengthened series of them, or both.

      On contemplating afresh our two typical phenomena, we may see that vital change is further distinguished from non-vital change, by being made up of many simultaneous changes. Nutrition is not simply a series of actions, but includes many actions going on together. During mastication the stomach is busy with food already swallowed, on which it is pouring out solvent fluids and expending muscular efforts. While the stomach is still active, the intestines are performing their secretive, contractile, and absorbent functions; and at the same time that one meal is being digested, the nutriment obtained from a previous meal is undergoing transformation into tissue. So too is it, in a certain sense, with mental changes. Though the states of consciousness which make up an argument occur in series, yet, as each of them is complex, a number of simultaneous changes have taken place in establishing it. Here as before, however, it must be admitted that the distinction between animate and inanimate is not precise. No mass of dead matter can have its temperature altered, without at the same time undergoing an alteration in bulk, and sometimes also in hygrometric state. An inorganic body cannot be compressed, without being at the same time changed in form, atomic arrangement, temperature, and electric condition. And in a vast and mobile aggregate like the sea, the simultaneous as well as the successive changes outnumber those going on in an animal. Nevertheless, speaking generally, a living thing is distinguished from a dead thing by the multiplicity of the changes at any moment taking place in it. Moreover, by this peculiarity, as by the previous one, not only is the vital more or less clearly marked off from the non-vital; but creatures possessing high vitality are marked off from those possessing low vitality. It needs but to contrast the many organs cooperating in a mammal, with the few in a polype, to see that the actions which are progressing together in the body of the first, as much exceed in number the actions progressing together in the body of the last, as these do those in a stone. As at present conceived, then, Life consists of simultaneous and successive changes.

      Continuance of the comparison shows that vital changes, both visceral and cerebral, differ from other changes in their heterogeneity. Neither the simultaneous acts nor the serial acts, which together constitute the process of digestion, are alike. The states of consciousness comprised in any ratiocination are not repetitions one of another, either in composition or in modes of dependence. Inorganic processes, on the other hand, even when like organic ones in the number of the simultaneous and successive changes they involve, are unlike them in the relative homogeneity of these changes. In the case of the sea, just referred to, it is observable that countless as are the actions at any moment going on, they are mostly mechanical actions that are to a great degree similar; and in this respect differ widely from the actions at any moment taking place in an organism. Even where life is nearly simulated, as by the working of a steam-engine, we see that considerable as is the number of simultaneous changes, and rapid as are the successive ones, the regularity with which they soon recur in the same order and degree, renders them unlike those varied changes exhibited by a living creature. Still, this peculiarity, like the foregoing ones, does not divide the two classes of changes with precision; since there are inanimate things presenting considerable heterogeneity of change: for instance, a cloud. The variations of state which this undergoes, both simultaneous and successive, are many and quick; and they differ widely from one another both in quality and quantity. At the same instant there may occur change of position, change of form, change of size, change of density, change of colour, change of temperature, change of electric state; and these several kinds of change are continuously displayed in different degrees and combinations. Yet when we observe that very few inorganic objects manifest heterogeneity of change comparable to that manifested by organic objects, and further, that in ascending from low to high forms of life, we meet with an increasing variety in the kinds of changes displayed; we see that there is here a further leading distinction between vital and non-vital actions. According to this modified conception, then, Life is made up of heterogeneous changes both simultaneous and successive.

      If, now, we look for some trait common to the nutritive and logical processes, by which they are distinguished from those inorganic processes that are most like them in the heterogeneity of the simultaneous and successive changes they comprise, we discover that they are distinguished by the combination among their constituent changes. The acts which make up digestion are mutually dependent. Those composing a train of reasoning are in close connection. And, generally, it is to be remarked of vital changes, that each is made possible by all, and all are affected by each. Respiration, circulation, absorption, secretion, in their many sub-divisions, are bound up together. Muscular contraction involves chemical change, change of temperature, and change in the excretions. Active thought influences the operations of the stomach, of the heart, of the kidneys. But we miss this union among non-vital activities. Life-like as may seem the action of a volcano in respect of the heterogeneity of its many simultaneous and successive changes, it is not life-like in respect of their combination. Though the chemical, mechanical, thermal, and electric phenomena exhibited have some inter-dependence, yet the emissions of stones, mud, lava, flame, ashes, smoke, steam, take place irregularly in quantity, order, intervals, and mode of conjunction. Even here, however, it cannot be said that inanimate things present no parallels to animate ones. A glacier may be instanced as showing nearly as much combination in its change as a plant of the lowest organization. It is ever growing and ever decaying; and the rates of its composition and decomposition preserve a tolerably constant ratio. It moves; and its motion is in immediate dependence on its thawing. It emits a torrent of water, which, in common with its motion, undergoes annual variations as plants do. During part of the year the surface melts and freezes alternately; and on these changes depend the variations in movement, and in efflux of water. Thus we have growth, decay, changes of temperature, changes of consistence, changes of velocity, changes of excretion, all going on in connexion; and it may be as truly said of a glacier as of an animal, that by ceaseless integration and disintegration it gradually undergoes an entire change of substance without losing its individuality. This exceptional instance, however, will scarcely be held to obscure that broad distinction from inorganic processes which organic processes derive from the combination among their constituent changes. And the reality of this distinction becomes yet more manifest when we find that, in common with previous ones, it not only marks off the living from the not-living, but also things which live little from things which live much. For while the changes going on in a plant or a zoophyte are so imperfectly combined that they can continue after it has been divided into two or more pieces, the combination among the changes going on in a mammal is so close that no part cut off from the rest can live, and any considerable disturbance of one chief function causes a cessation of the others. Hence, as we now regard it, Life is a combination of heterogeneous changes, both simultaneous and successive.

      When we once more look for a character common to these two kinds of vital action, we perceive that the combinations of heterogeneous changes which constitute СКАЧАТЬ