The Principles of Biology, Volume 1 (of 2). Spencer Herbert
Чтение книги онлайн.

Читать онлайн книгу The Principles of Biology, Volume 1 (of 2) - Spencer Herbert страница 19

Название: The Principles of Biology, Volume 1 (of 2)

Автор: Spencer Herbert

Издательство: Public Domain

Жанр: Философия

Серия:

isbn:

isbn:

СКАЧАТЬ from the few combinations which they otherwise resemble, in respect of definiteness. The associated changes going on in a glacier, admit of indefinite variation. Under a conceivable alteration of climate, its thawing and its progression may be stopped for a million years, without disabling it from again displaying these phenomena under appropriate conditions. By a geological convulsion, its motion may be arrested without an arrest of its thawing; or by an increase in the inclination of the surface it slides over, its motion may be accelerated without accelerating its rate of dissolution. Other things remaining the same, a more rapid deposit of snow may cause great increase of bulk; or, conversely, the accretion may entirely cease, and yet all the other actions continue until the mass disappears. Here, then, the combination has none of that definiteness which, in a plant, marks the mutual dependence of respiration, assimilation, and circulation; much less has it that definiteness seen in the mutual dependence of the chief animal functions; no one of which can be varied without varying the rest; no one of which can go on unless the rest go on. Moreover, this definiteness of combination distinguishes the changes occurring in a living body from those occurring in a dead one. Decomposition exhibits both simultaneous and successive changes, which are to some extent heterogeneous, and in a sense combined; but they are not combined in a definite manner. They vary according as the surrounding medium is air, water, or earth. They alter in nature with the temperature. If the local conditions are unlike, they progress differently in different parts of the mass, without mutual influence. They may end in producing gases, or adipocire, or the dry substance of which mummies consist. They may occupy a few days or thousands of years. Thus, neither in their simultaneous nor in their successive changes, do dead bodies display that definiteness of combination which characterizes living ones. It is true that in some inferior creatures the cycle of successive changes admits of a certain indefiniteness – that it may be suspended for a long period by desiccation or freezing, and may afterwards go on as though there had been no breach in its continuity. But the circumstance that only a low order of life can have its changes thus modified, serves but to suggest that, like the previous characteristics, this characteristic of definiteness in its combined changes, distinguishes high vitality from low vitality, as it distinguishes low vitality from inorganic processes. Hence, our formula as further amended reads thus: – Life is a definite combination of heterogenous changes, both simultaneous and successive.

      Finally, we shall still better express the facts if, instead of saying a definite combination of heterogeneous changes, we say the definite combination of heterogeneous changes. As it at present stands, the definition is defective both in allowing that there may be other definite combinations of heterogeneous changes, and in directing attention to the heterogeneous changes rather than to the definiteness of their combination. Just as it is not so much its chemical elements which constitute an organism, as it is the arrangement of them into special tissues and organs; so it is not so much its heterogeneous changes which constitute Life, as it is the co-ordination of them. Observe what it is that ceases when life ceases. In a dead body there are going on heterogeneous changes, both simultaneous and successive. What then has disappeared? The definite combination has disappeared. Mark, too, that however heterogeneous the simultaneous and successive changes exhibited by such an inorganic object as a volcano, we much less tend to think of it as living than we do a watch or a steam-engine, which, though displaying changes that, serially contemplated, are largely homogeneous, displays them definitely combined. So dominant an element is this in our idea of Life, that even when an object is motionless, yet, if its parts be definitely combined, we conclude either that it has had life, or has been made by something having life. Thus, then, we conclude that Life is —the definite combination of heterogeneous changes, both simultaneous and successive.

      § 26. Such is the conception at which we arrive without changing our stand-point. It is, however, an incomplete conception. This ultimate formula (which is to a considerable extent identical with one above given – "the co-ordination of actions;" seeing that "definite combination" is synonymous with "co-ordination," and "changes both simultaneous and successive" are comprehended under the term "actions;" but which differs from it in specifying the fact, that the actions or changes are "heterogeneous") – this ultimate formula, I say, is after all but a rude approximation. It is true that it does not fail by including the growth of a crystal; for the successive changes this implies cannot be called heterogeneous. It is true that the action of a galvanic battery is not comprised in it; since here, too, heterogeneity is not exhibited by the successive changes. It is true that by this same qualification the motions of the Solar System are excluded, as are also those of a watch and a steam-engine. It is true, moreover, that while, in virtue of their heterogeneity, the actions going on in a cloud, in a volcano, in a glacier, fulfil the definition; they fall short of it in lacking definiteness of combination. It is further true that this definiteness of combination distinguishes the changes taking place in an organism during life from those which commence at death. And beyond all this it is true that, as well as serving to mark off, more or less clearly, organic actions from inorganic actions, each member of the definition serves to mark off the actions constituting high vitality from those constituting low vitality; seeing that life is high in proportion to the number of successive changes occurring between birth and death; in proportion to the number of simultaneous changes; in proportion to the heterogeneity of the changes; in proportion to the combination subsisting among the changes; and in proportion to the definiteness of their combination. Nevertheless, answering though it does to so many requirements, this definition is essentially defective. The definite combination of heterogeneous changes, both simultaneous and successive, is a formula which fails to call up an adequate conception. And it fails from omitting the most distinctive peculiarity – the peculiarity of which we have the most familiar experience, and with which our notion of Life is, more than with any other, associated. It remains now to supplement the conception by the addition of this peculiarity.

      CHAPTER V.

      THE CORRESPONDENCE BETWEEN LIFE AND ITS CIRCUMSTANCES

      § 27. We habitually distinguish between a live object and a dead one, by observing whether a change which we make in the surrounding conditions, or one which Nature makes in them, is or is not followed by some perceptible change in the object. By discovering that certain things shrink when touched, or fly away when approached, or start when a noise is made, the child first roughly discriminates between the living and the not-living; and the man when in doubt whether an animal he is looking at is dead or not, stirs it with his stick; or if it be at a distance, shouts, or throws a stone at it. Vegetal and animal life are alike primarily recognized by this process. The tree that puts out leaves when the spring brings increase of temperature, the flower which opens and closes with the rising and setting of the sun, the plant that droops when the soil is dry and re-erects itself when watered, are considered alive because of these induced changes; in common with the acorn-shell which contracts when a shadow suddenly falls on it, the worm that comes to the surface when the ground is continuously shaken, and the hedgehog that rolls itself up when attacked.

      Not only, however, do we look for some response when an external stimulus is applied to a living organism, but we expect a fitness in the response. Dead as well as living things display changes under certain changes of condition: instance, a lump of carbonate of soda that effervesces when dropped into sulphuric acid; a cord that contracts when wetted; a piece of bread that turns brown when held near the fire. But in these cases, we do not see a connexion between the changes undergone and the preservation of the things that undergo them; or, to avoid any teleological implication – the changes have no apparent relations to future events which are sure or likely to take place. In vital changes, however, such relations are manifest. Light being necessary to vegetal life, we see in the action of a plant which, when much shaded, grows towards the unshaded side, an appropriateness which we should not see did it grow otherwise. Evidently the proceedings of a spider which rushes out when its web is gently shaken and stays within when the shaking is violent, conduce better to the obtainment of food and the avoidance of danger than were they reversed. The fact that we feel surprise when, as in the case of a bird fascinated by a snake, the conduct tends towards self-destruction, at once shows how generally we have observed an adaptation of living changes to changes in surrounding circumstances.

      A СКАЧАТЬ