Начертательная геометрия: конспект лекций. Ирина Сергеевна Козлова
Чтение книги онлайн.

Читать онлайн книгу Начертательная геометрия: конспект лекций - Ирина Сергеевна Козлова страница 7

СКАЧАТЬ плоскости Q вследствие ее перпендикулярности двум пересекающимся прямым этой плоскости (АВ и Вb). Прямая bc параллельна ВС, т. е. она также перпендикулярна Q, а значит и прямой ab, которая лежит в ней.

      Ясно, что если на эпюре одна пара одноименных проекций двух прямых перпендикулярна, а одна из двух остальных проекций параллельна оси х, то такие прямые образуют в пространстве прямой угол.

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

iVBORw0KGgoAAAANSUhEUgAAATEAAADFCAIAAACzc1KEAAAABmJLR0QAAAAAAAD5Q7t/AAAACXBIWXMAAA7EAAAOxAGVKw4bAAANVklEQVR42u2dPY7bOheGvZGswCvwOj7MHlKnTOU+QPqsIMDUWYC7adIOUgfTpk0994Xfe/kRpCzLtn6OqOcpBraGkvj38hxSh9buHQAisaMKANAkAKBJADQJAGgSAE3eyNvb24cPH3ZnPn36RAMAjK9Jyezl5aXz+PPzs/7mByXIr1+/JnEiS4DxNfn09CSj13lcqss1KYnqyKWvADCaJkVhD6W3WqtoEmAOTUpXz2fyg4fDQQ6tZFknxncFmFCTkpaNZC6//X5vldaSy9d4MJIA42tSwrPdk2H0EX21PiXIwngW4pQsOxeHANDk/UiBFp51KKUlcepDMckskGhTYgAYR5PJZT0ej17XeX19/ffSuysXV0qlOZ1ONAPAaJpMhs6zx/Q1N5j9p2vySTMAjKbJfBUnfyKiiaLnmf0omUzlkJQAaHImHFpASwBE0eR79tASAEJoUoLEVAIE0iSmEiCcJjGVALE0+X5+ntkT9wOAJueGsB6AWJokAhbgPdrv8WAqAWJpElMJEO536zCVgCZjYVPJAiygyVimUrLs33sJgCbnw/sqj8cjzQNoMgpsFgE0GQ4iYAFNxoIIWECTmEoANImpBFiRJjGVgCYxlQBo8moWCesBNBkKImABTcaCzSKAJjGVAGgSUwmwIk1iKgFNBjWVLMACmoxlKtlXCWgyEOyrBDQZDvZVApoMBxGwgCZjQQQsoElMJQCaxFQCmsRUAqBJTCVAK5p8Z18loMloEAELaDIWbBYBNImpBECTA0wls0pAk7FMJZtFAE2GM5VSJm0JaDIK8l0xlYAmY7Hf79lXCWgyEIT1AJoMBxGwgCYxlQBoElMJaBJTCYAmMZWAJjGVGW9vb08AE7MVTb6Psa9yv9/vAKbkdDptSJMPbhaRnmVpiQqCieg3km1q8pF9lezJhKkNxtW51a7Vkt9hKiVIlohgOgYGZrepyfv2VV51KgAe6ZMa8Yf0yV2rVXDrvkq/iYRpJEyEetfAHYXNavKmfZUSJLu9YDrUwYZPpnYNV8RA990Lra+vr3QdmILj8XiTC7ZruzqG7KvknZYwtWG4aWmjcU1eDethXQcmnUCp+9064u+ar5eexxuEB8CkaA55x4jfviYvmcqXlxfCA2A6hoQHbFSTnaaS8ACYehp5twu2CU3WppJpJEw6jXxkI8RuI9WUW8W7nQqAgZ3tkR8c3oomk6k8Ho+EB8B0PO6C7bZTWX4OydNImI7T6aQO9mD8yYY06QhYppEwEQ4PeHzhcEOadFArL+GCKbgvPID55AdizWEi7gsP2K4mU3gAL+GCiaZFI76buH1NFntJeQkXjD6NHDdCs31N1k6FjmAqYawRf/RFisY12RkeYFcWUwmPM0WEZsua7HlYxPsq4XHUhdSRRr/sRn/7gzeLwINMt6+o2d+t85OPmb0O2AhyvqbrP21qckjMIaYS7h7x5bJOFxDWoCYttiFLOJhKuIPD4TDFNLJZTd60poqphDtcsBHDA9rX5PCfmsZUwh3M8wNOTWnyjphDTCUMH/Hn+QGndjR598MiNovAEGZ7pt2IJu/wWhPjBhBDkwxfOEST/58W3h3COkXIIrTEzD87unpN+mHRg4bu1pdwwXZweMCcQ/bqNfn09CRNPign9lVCz4g/8+/FrFuTI66asq8SOudEk4YHtKbJ0VXEvkooXLBFflFtrZp8ZKG1fyqPqYT3Rd/vtFZNTjSGsa8S3s/rOgsuxa9Sk9ONYYT1wPvSr5NZnyanfpxIBOzGmTM8oBFNPviCFEwlBF9TWJMmZ3tYhKncJlMsHDauyVHCAzCVcIkRf8t8E5qc+aWRmMqt8XiE5rY0Of/DIkzlppjNBWtHk4s8NuRNlRvBAWGn0ylIflagyRl+AeWSt0xYT/N4XSfUPCW6JhcMcWKzyEa81mivCQ6tycV3G7NZpG1irhqE1mQEp4LNIm1PIwMOuHE1GcSpYLNIw9PImD/4sgsryGVjDjGVbRO5TSNqMtqCJ6ayMQsZJzxgHZr01rU4D4sM+yqbQe146a2kaLKbqbd93AdhPW1glyf474bG0uRS4QEDBwsiYNfutYZd1wmqyQXDAzCVWyBgeEBoTc72ghRM5TaZeV/R6jUZMOYQU9kSwV2wiJpci1OBqWQauQlNOjxgLfVlU/l8JrinDWkYXVfIx8KajP+wqKPKMnhoGZy730q6UU16XWdd3TrZyTRLwVqGZdmfTl6lJlfnVDjPeRsr/2uZCW8NhwescfK/mCZXtK7To0k1OZoMiNd1VjqzWEaT61qbzvGL1j0BXssjnA0S5FchV6PJmd9EfWveNF7YI7XYJLz8qy18WuNhD1fMcXPVj5Hn1mTwh0X2qG3A1bT7/T7Zc+U5N4n6yu6tgKzXBVtMk8GnkfJ58uYs7DlTx/jTyDUutC6pST+NjFwd+bMsr6QXAwr9PnjzNdBG8ylEXTx4iJNG2bxFldX8qwwmyzl4re1o0k5F8DGsmDFqPpkvpjuejq4fEzs1bcRvzKRJDWDxnQqJMFddkeG09gMBB9OVhgcspsm1hAcUo2xhFYmhCzvjWG94wDKaXPxN1NA2qw4PWECTkcMDoAEi/4BTRE2ubi8prG4a2aQLNqEm/Z5Nug5M1Xcb3b86lSZ5IxVM7bW2GsIxiSbjhwcAXuuGNMmrVGFSml843I0uyFWEB8BKsQvWdpDjyJps2MuHxfErsZrvYGNq0u+o0xj2DDABspBbWMkfTZMOAgaYjo08WkOTgCZbX3cFADQJgCYBAE0CoEkAQJMAaBIA0CQAoEkANAkAaBIATQIAmgRAkwCAJgHQJACgSQBAkwBoEgDQJACaBAA0CdC+Jv/+/fv58+ePHz/+74w+//79+/Gbffv2TVf7/v37pQR//vz58uXLxzOf/8Nff/z4QWupXVw/v379yo///PlTB/UvVWDDxVep1X9UCaczm7OTKv9ut3PbS0uHw+Hx9s6veQl1L6VJQ4Buqq8NN8B9dZiPUOqjah111i0MSRp6VNi2B+iLmpQ1U9vnOunX0hAkrXTNnvvmb8NW7esUNQZqTL6GKkR/0xG5EjrS431AI5q0L5Ra3T6Dnck0YtmaSWk+Lun23+zLmf40ulGexr6rPuhezoY6X55GonWa/O7Okj1en2W164MMb2dBOouma/peRa40PPn69qZ0ZaXX11wqecb0OdWnz/XfPGOX8lDXT940urI+555FXld2NJQ+DWquGZdoyCl5TdZ5tuuUl/TWmrnUrEWyS32vyL+OO/NOqcz7c9496g6Td+AhZSy6mU/sKfXVzA+dT6qZZa/ceLqccuZs+dK2nB62XY9D9HbVC6091dxPc+dTsZ3M1Zc6ejKnKUuqGidw/vVB/1KauiCdRcszo0oo/CXXjC7oE30XDx8eSoqMpSukiioy1pmHun585XycKjyLZE59KV02/dcCrp2RS6cUNVnn2b2tKOmtNVM3a51sSOX4Rs5YKp2+qpaU3tKq71534CFlrHt+T6mHZP66Ju1k6t4qT+43Jlc+DQ864gS2P1cnQv1pCk+1mFvqXvbQklpSXfviSulTPIJ4kPNZqqOegnQesZCslsIQebDwaKoTnWc1gLPXmbF0haTzOmN1Hur60blWlO/oTNajocdTGwqP1s6D79U5gBan1DVZ5/lSSW+qmaJZdfxSsv7KOZyxyJOEdCnnv/PuHn2KDjykjHXP7yn1kJa9rsl8YMvdg7zf5+ofgvJXX7P/vvmAl492rsr87mngV1WmvpXOKi5bF6Q+ko9NOr2wKmmxyicqmVsljfFFxqwcO0VpsCsydikPxYTCdl4JVMZkW4pZgy/140z6b+qpzmrhsNSnFDXZWZl1SW+tmbpZe5L1VE66nQXgD7ZySRv1ZesOPKSMtbT6Sz2kZa9rsnPNwFVm98mXzkdoO/3i0vJsPmx0JnMx8vvqdmke4ilZWma0B586WT4Opdp0x/LXfLGuLkh9RNdMFe0b5Z04jS+pG1m97v2dGfOA6hNt64qMdeahXnVM98otT5GysAzOeap/fahX7OpTippMmS9G/aKkt9ZM3ayXkvVXTsq/BeDrWJNOn9z+/LL5zNwdeEgZi9UWnagb9ZT6auavaFJFsn9vl7peibXL6j7hG9t1dsPbq65nQenc5DsVyYr72pvPs+GHpa5H14sXYOxrpX7vvHlm78TuiK4X11FREN2oLlpuYewU5Z04798eNXwFV0JnxtKg62zUGavzUNePLut1kSROHamfDaSL+5ppHquUznB9/fqUoibzNCnPdUlvrZm6WTuT9VdOnTd7kqooD6zOSX3ZugMPKWN9Yn+pr2b+iibtVpn6X6lfpg9KZkvdbwCLa9bJijT1V5dQ5Cfqc373+mA+y01z41QQX9bmvSiax4V0YpHbdNn0wRnuz1h+2TpjndVb10+6nS/ig5eyV+TKWcpv1H9KUYrOyryUZkjNXGrW+rL9lVPczi59umCevm6XogMPKWN9Yn+pr2Z+6LOQUAx5sHkHnozxQKyxZm32+WQc7DzUTyMex6s7dILGmhVNAgCaBECTAIAmAbbIP5orG6juGs/HAAAAAElFTkSuQmCCiVBORw0KGgoAAAANSUhEUgAAAWgAAADgCAIAAAChE2uDAAAABmJLR0QAAAAAAAD5Q7t/AAAACXBIWXMAAA7EAAAOxAGVKw4bAAAaxklEQVR42u2dO3IjNxeFuZFZAVfAjHv4a/bgWKEj5q5i7hW4SrEXoGwSpyzHLqVOHeu/5hld3wHQaDy70d3nBCqJavYT+Pq+AJw+KIqiMnXiLaAoiuCgKIrgoCiK4KAoiuCgdqL7/X46sTFQBAeVrK9fv56e4q2gCA5qXu/v70KNy1MEB0VwUEnU+PLli4BDjQ7eE4rgoGJ6fX0Vary8vFhvhbeFIjioSd1uN8GEsEM/ITgogoOKuSeXy+V8Pn/79s1+TnBQBAc1qfNT/ucEB0VwUJO2hgBCfiE4KIKDSqKGJlCCIjgogoP6QUig3O/3yDYEB0VwUD9Qw0mgEBwUwUHF3JPz+Sy2RjCoQXBQBAfl6tu3b4IMAUcKNQgOiuCgUt0TgoMiOKjvejwegoDb7Zb1LYKDIjhoa7zmfpHgoAiOg+p+v3/58qWAGgQHRXAcVNLzExMoBAdFcFD/JlDO5/PlcimmBsFBERzHEoIauaFQgoMiOI6rl5cXcU+cAfIEB0VwUJPCZDyPx6PJ3ggOiuA4iq1RlkAhOCiC44iqTKAQHBTBcSyJiXE+n6cm4yE4KIKDClCjSQKF4KAIjmO5J00SKAQHRXAciBrN3ROCgyI49qnZuUIJDorgoFxNrWZAcFAEBxXQ4/FYxtYgOCiCYydCAmUxahAcFMGxeSEU2qqWnOCgCI6d6/39XTpw5QB5goMiOI5FjSWDGgQHRXBsXlhs7eXlZUX/iOCgCI4tCQPkGw51JTgogmPnQo9dlxoEx/haOFhOcIxOjeUTKATHFtvJ6q8WgmMIvb+/Xy6XHgPkCY6d6X6/j2CTEhxDUGPFBArBsSEJLwCOfgOjCY7NNAWhhrSG0YxhgmPAF8zrUwM+GraVpakxoNlJcIwphDZeXl4IjkO/Pc7nc+9pNQiOPb1joDEfDdvKQhJqNFzNgODYt6Sd6ByR8miu1yvBcURbA6HQYalBcAz4OPR3ZN8IjoNSY/yWSnAM5aQgjSI/1WchOA7UAsYMhRIco71dEMsY2SYlOEgNgmNNQCBR8vWpk6fR6jUIjhW64vgeCsHRQ+pffP2URYN+iG2EJrK9/nfYvBvBQXAQHC0Bcb/f8ayRONP+jw9vt5sCYmo/svHlcpGf+KL8TnAQHATHHrzOWUAUhzBRUY7J3+QX/LnizCwEB8FBcBRi4vbUKaTbp5r1wM9ZqTUohkMPHihlWyE4DgqOSCRC7Qh58886GjVCOTl2Lj8VIl+eIjgIDoJjFEfjcrmURSJ6kAu+iX4CJ+hjC+U/BAfBsRNwRCIRKL6siUT0kB8HhZOCjCw8l9FGURMcBMcmwREvhRgTEEGBa76BY2Ex5hQ+BAfBMS444oBwAhBbKZpyQhtBa8IZmTLO5JIEB8ExEDicCKUNQPiA2ERlVGJoY6ptwMqwAEV9x2jXTnAQHIuCA7lMG4CwmGib6dzirfZHKoi5IZ/IHSM4CI6dgyMlErFdR6Pe3IiHPP0NEDQdKlBKcBAc5eBQQKQ4GocCxJRSKsqDE3CMFiglOAiOeXCkRCKkZe8pEtFDttwrIifMYZ/ROEPgCA6C4z9wOKO2EJZzaqUIiH5Oit3SNy4QKB2kopTgOBw41L+IA4L+xfJOig1zBMe52bJ0goPgCOjxeOCtXuzWZtVKwfvgU1vXSbGNZ4oyg0wQxbYyIjiQmMQvsyOsNQCRUis11XY5OrariZebE5kKc1gMrWsMsq0MBw6xNfSLwdWGUewQnHjufD7jv7m1hgRH15aQe29RuxExK85PERwExw9f1JeJ2KtqI3QdlEFwdFLxWLX4dD4IoK7IDraV4cChHVhamzq6aH9oKz3SGQRHD6F7l00FGAlzWHdmrUAp20qv90zxOjqwUZH1kJ3AmoBbi+7do60QHD1UM8wkHuZQp3WtilK2lar3SXy2+7Iejt1+fKZFbBPUeeWaB9UJjuYC64sHtk5VcwSPsnyglG0lyXwoGMHZsI4DbUjYYa2Ptg4LwdHDSam0BeSJp8xavEpFKdvKd2nVAxIWTlnU+Xx26ib7xTiCbxWnXrD5JPoER1tdnqp/KCl1oqgoXXhRhRMBYQHhZCtqLMCG4PDfPE1eaARHJyE8Ue8+ICKeYkosX1G6/7ai89lHZrvvUYfXChya0hdZh7ntJPoER8tO1agPz1ZzOO18yUUVdtJW СКАЧАТЬ