Название: The Glass Universe: The Hidden History of the Women Who Took the Measure of the Stars
Автор: Дава Собел
Издательство: HarperCollins
isbn: 9780007548194
isbn:
At the end she entreated Pickering’s counsel. “I am so unusually alone in the world, that without feeling that those friends who were interested in Henry’s work would advise me, I could not do anything.”
Pickering encouraged her to publish her husband’s findings to date, since it might take her a long time to add to them. Once again he extended his offer to examine the glass photographic plates on the measuring machine at Harvard, if she would be so good as to send him some.
Mrs. Draper agreed but thought it best to deliver the plates in person. They were small objects, only about an inch square each.
“I may be obliged to go to Boston in the course of the next ten days to attend to some business matters with one of my brothers,” she wrote on January 25. “If so I could take the negatives with me and by going to Cambridge for part of a day, if it was convenient for you, could look over the pictures with you, and see what you think of them.”
As arranged, she reached Summerhouse Hill above Harvard Yard on Friday morning, February 9, accompanied by her husband’s close friend and colleague George F. Barker of the University of Pennsylvania. Barker, who was preparing a biographical memoir of Henry, had been the Drapers’ houseguest at the time of the Academy dinner. Late that night, when Henry was seized with a violent chill while bathing, it was Barker who helped lift him from the tub and carry him to the bedroom. Then he bid the Drapers’ neighbor and physician Dr. Metcalfe, another dinner guest, to return to the house immediately. Dr. Metcalfe diagnosed double pleurisy. Although Henry of course received the most tender nursing—and showed some brief promise of improvement—the infection spread to his heart. On Sunday the doctor noted the signs of pericarditis, which precipitated Henry’s death at about four o’clock Monday morning, the twentieth of November.
• • •
MRS. DRAPER HAD VISITED OBSERVATORIES with her husband in Europe and the States, but she had not set foot inside one in months. At Harvard, the large domed building that housed the several telescopes doubled as the director’s residence. Both Professor and Mrs. Pickering ushered her into the pleasant rooms and made her feel welcome.
Mrs. Pickering, née Lizzie Wadsworth Sparks, daughter of former Harvard president Jared Sparks, did not aid her husband in his observations, as Mrs. Draper had done, but acted as the institution’s vivacious and charming hostess.
An exaggerated though genuine politeness characterized the directorial style of Edward Charles Pickering. If the observatory’s financial straits constrained him to pay his eager young assistants meager wages, nothing prevented his addressing them respectfully as Mr. Wendell or Mr. Cutler. He called the senior astronomers Professor Rogers and Professor Searle, and all but doffed his hat and bowed to the ladies—Miss Saunders, Mrs. Fleming, Miss Farrar, and the rest—who arrived each morning to perform the necessary calculations upon the nighttime observations.
Was it usual, Mrs. Draper wondered, to employ women as computers? No, Pickering told her, as far as he knew the practice was unique to Harvard, which currently retained six female computers. While it would be unseemly, Pickering conceded, to subject a lady to the fatigue, not to mention the cold in winter, of telescope observing, women with a knack for figures could be accommodated in the computing room, where they did credit to the profession. Selina Bond, for example, was the daughter of the observatory’s revered first director, William Cranch Bond, and also the sister of his equally revered successor, George Phillips Bond. She was currently assisting Professor William Rogers in fixing the exact positions (in the celestial equivalents of latitude and longitude) for the several thousand stars in Harvard’s zone of the heavens, as part of a worldwide stellar mapping project administered by the Astronomische Gesellschaft in Germany. Professor Rogers spent every clear night at the large transit instrument, noting the times individual stars crossed the spider threads in the eyepiece. Since air—even clear air—bent the paths of light waves, shifting the stars’ apparent positions, Miss Bond applied the mathematical formula that corrected Professor Rogers’s notations for atmospheric effects. She used additional formulas and tables to account for other influential factors, such as Earth’s progress in its annual orbit, the direction of its travel, and the wobble of its axis.
Anna Winlock, like Miss Bond, had grown up at the observatory. She was the eldest child of its inventive third director, Joseph Winlock, Pickering’s immediate predecessor. Winlock had died of a sudden illness in June 1875, the week of Anna’s graduation from Cambridge High School. She went to work soon afterward as a computer to help support her mother and younger siblings.
Williamina Fleming, in contrast, could claim no familial or collegiate connection to the observatory. She had been hired in 1879, on the residence side, as a second maid. Although she had taught school in her native Scotland, certain circumstances—her marriage to James Orr Fleming, her immigration to America, her husband’s abrupt disappearance from her life—forced her to seek employment in a “delicate condition.” When Mrs. Pickering recognized the new servant’s abilities, Mr. Pickering reassigned her as a part-time copyist and computer in the other wing of the building. No sooner had Mrs. Fleming mastered her tasks in the observatory than the impending birth of her baby sent her home to Dundee. She stayed there more than a year after her confinement, then returned to Harvard in 1881, having left her son, Edward Charles Pickering Fleming, in the care of her mother and grandmother.
• • •
NONE OF THE PROJECTS UNDER WAY at the observatory looked familiar to Mrs. Draper. Henry’s amateur standing and private means had freed him to follow his own interests at the forefront of stellar photography and spectroscopy, while the professional staff here in Cambridge hewed to more traditional pursuits. They charted the heavens, monitored the orbits of planets and moons, tracked and communicated the courses of comets, and also provided time signals via telegraph to the city of Boston, six railroads, and numerous private enterprises such as the Waltham Watch Company. The work demanded both scrupulous attention to detail and a large capacity for tedium.
When the thirty-year-old Pickering took over as director on February 1, 1877, his primary responsibility had been to raise enough money to keep the observatory solvent. It received no support from the college to pay salaries, purchase supplies, or publish the results of its labors. Aside from interest on its endowment and income from its exact-time service, the observatory depended entirely on private bequests and contributions. A decade had passed since the last solicitation for funds. Pickering soon convinced some seventy astronomy enthusiasts to pledge $50 to $200 per year for five years, and while those subscriptions trickled in, he sold the grass cuttings from the six-acre observatory grounds at a small profit. (They brought in about $30 a year, or enough to cover some 120 hours’ worth of computing time.)
Born and bred on Beacon Hill, Pickering navigated easily between the moneyed Boston aristocracy and the academic halls of Harvard University. In his ten years spent teaching physics at the fledgling Massachusetts Institute of Technology, he had revolutionized instruction by setting up a laboratory where students learned to think for themselves while solving problems through experiments that he designed. Pursuing his own research at the same time, he explored the nature of light. He also built and demonstrated, in 1870, a device that transmitted sound by electricity—a device identical in principle to the one perfected and patented six years later by Alexander Graham Bell. Pickering, however, never thought to patent any of his inventions because he believed scientists should share ideas freely.
At Harvard, Pickering chose a research focus of fundamental importance that had been neglected at most other observatories: photometry, or the measurement of the brightness of individual stars.
Obvious contrasts in brightness challenged astronomers to explain why some stars outshone others. Just as they ranged in color, stars apparently came in a range of sizes, and existed at different distances from Earth. Ancient astronomers СКАЧАТЬ