Vibroacoustic Simulation. Alexander Peiffer
Чтение книги онлайн.

Читать онлайн книгу Vibroacoustic Simulation - Alexander Peiffer страница 35

Название: Vibroacoustic Simulation

Автор: Alexander Peiffer

Издательство: John Wiley & Sons Limited

Жанр: Отраслевые издания

Серия:

isbn: 9781119849865

isbn:

СКАЧАТЬ is used in one dimensional form.

      2.3.1 Harmonic Waves

       f left-parenthesis x right-parenthesis comma g left-parenthesis x right-parenthesis equals e Superscript j omega x slash c 0 Baseline equals e Superscript j k x Baseline with k equals StartFraction omega Over c 0 EndFraction (2.33)

      and get

Name Time Space
Symbol Unit Symbol Unit
Period T s λ=c0T m
Frequency f=1T s −1(Hz) (⋅)=1λ m −1
Angular frequency ω=2πf=2πT s −1 k=2πλ=ω/c0 m −1

      The time integration in Equation (2.31) corresponds to the factor 1/(jω) and reads in the frequency domain:

      For one-dimensional waves in the x-direction this leads to:

      Depending on the wave orientation the ratio between pressure and velocity is given by:

       bold-italic v Subscript x Baseline equals plus-or-minus StartFraction 1 Over rho 0 c 0 EndFraction bold-italic p (2.37)

      In accordance with the impedance concept from section 1.2.3 we define the ratio of complex pressure and velocity as specific acoustic impedance z

      also called acoustic impedance. For plane waves this leads to:

       z 0 equals plus-or-minus rho 0 c 0 (2.39)

      z0=ρ0c0 is called the characteristic acoustic impedance of the fluid. The specific acoustic impedance z is complex, because for waves that are not plane the velocity may be out of phase with the pressure. However, for plane waves the specific acoustic impedance is real and an important fluid property.

      The above description of plane waves can be extended to three-dimensional space by introducing a wavenumber vector k.

      2.3.2 Helmholtz equation

      Entering (2.40) into the wave Equation (2.27) provides

       left-parenthesis StartFraction 1 Over c 0 squared EndFraction StartFraction partial-differential squared Over partial-differential t squared EndFraction minus normal upper Delta right-parenthesis bold-italic p left-parenthesis bold x comma t right-parenthesis equals minus left-parenthesis StartFraction omega squared Over c 0 squared EndFraction plus normal upper Delta right-parenthesis bold-italic p left-parenthesis bold x comma omega right-parenthesis e Superscript j omega t Baseline equals 0 period (2.41)

      The ejωt term is often omitted and with k=ω/c0 we get the homogeneous.

       left-parenthesis k squared plus normal upper Delta right-parenthesis bold-italic p left-parenthesis bold x comma omega right-parenthesis equals 0 (2.42)

      2.3.3 Field Quantities: Sound Intensity, Energy Density and Sound Power

      A sound wave carries a certain amount of energy that is moving with the speed of sound. We start with the instantaneous acoustic power Π: