Vibroacoustic Simulation. Alexander Peiffer
Чтение книги онлайн.

Читать онлайн книгу Vibroacoustic Simulation - Alexander Peiffer страница 30

Название: Vibroacoustic Simulation

Автор: Alexander Peiffer

Издательство: John Wiley & Sons Limited

Жанр: Отраслевые издания

Серия:

isbn: 9781119849865

isbn:

СКАЧАТЬ equations can be written in matrix form. The frequency domain matrix reads as

       Start 5 By 1 Matrix 1st Row bold-italic upper G 1 left-parenthesis omega right-parenthesis 2nd Row vertical-ellipsis 3rd Row bold-italic upper G Subscript m Baseline left-parenthesis omega right-parenthesis 4th Row vertical-ellipsis 5th Row bold-italic upper G Subscript upper M Baseline left-parenthesis omega right-parenthesis EndMatrix equals Start 5 By 5 Matrix 1st Row 1st Column bold-italic upper H 11 left-parenthesis omega right-parenthesis 2nd Column midline-horizontal-ellipsis 3rd Column bold-italic upper H Subscript 1 n Baseline left-parenthesis omega right-parenthesis 4th Column midline-horizontal-ellipsis 5th Column bold-italic upper H Subscript 1 upper N Baseline 2nd Row 1st Column vertical-ellipsis 2nd Column down-right-diagonal-ellipsis 3rd Column vertical-ellipsis 4th Column down-right-diagonal-ellipsis 5th Column vertical-ellipsis 3rd Row 1st Column bold-italic upper H Subscript m Baseline 1 Baseline left-parenthesis omega right-parenthesis 2nd Column midline-horizontal-ellipsis 3rd Column bold-italic upper H Subscript m n Baseline left-parenthesis omega right-parenthesis 4th Column midline-horizontal-ellipsis 5th Column bold-italic upper H Subscript m upper N Baseline 4th Row 1st Column vertical-ellipsis 2nd Column down-right-diagonal-ellipsis 3rd Column vertical-ellipsis 4th Column down-right-diagonal-ellipsis 5th Column vertical-ellipsis 5th Row 1st Column bold-italic upper H Subscript upper M Baseline 1 Baseline left-parenthesis omega right-parenthesis 2nd Column midline-horizontal-ellipsis 3rd Column bold-italic upper H Subscript upper M n Baseline left-parenthesis omega right-parenthesis 4th Column midline-horizontal-ellipsis 5th Column bold-italic upper H Subscript upper M upper N Baseline EndMatrix Start 5 By 1 Matrix 1st Row bold-italic upper F 1 left-parenthesis omega right-parenthesis 2nd Row vertical-ellipsis 3rd Row bold-italic upper F Subscript n Baseline left-parenthesis omega right-parenthesis 4th Row vertical-ellipsis 5th Row bold-italic upper F Subscript upper N Baseline left-parenthesis omega right-parenthesis EndMatrix (1.197)

      or in short form

      The force excitation and displacement response matrix [H(ω)] corresponds to the inverse dynamic stiffness matrix of Equation (1.83).

      1.7.1 Multiple Random Inputs

      Equations (1.196) and (1.195) can only be used in case of fully correlated input because each summand in those equations will have a different phase or time delay for each set of input signals taken from the ensemble of possible input or for each separate test.

      Consider a set of N random input signals as given in Equation (1.195) or (1.196). For the description of the input we need the power spectral density or autocorrelation of all signals fn(t) given by

       bold-italic upper S Subscript f f comma n n Baseline equals upper E left-bracket bold-italic upper F Subscript n Superscript asterisk Baseline left-parenthesis omega right-parenthesis bold-italic upper F Subscript n Baseline left-parenthesis omega right-parenthesis right-bracket (1.199)

      Here the index ff denotes that only the input is considered, and nn that it is the autocorrelation of the nth input. In addition the cross correlation between the input signals is given by:

       bold-italic upper S Subscript f f comma m n Baseline equals upper E left-bracket bold-italic upper F Subscript m Superscript asterisk Baseline left-parenthesis omega right-parenthesis bold-italic upper F Subscript n Baseline left-parenthesis omega right-parenthesis right-bracket (1.200)

      This expression is called the cross spectral density matrix that looks in large form

       Start 1 By 1 Matrix 1st Row bold-italic upper S Subscript f f Baseline EndMatrix equals Start 5 By 5 Matrix 1st Row 1st Column bold-italic upper S Subscript f f comma 11 Baseline left-parenthesis omega right-parenthesis 2nd Column midline-horizontal-ellipsis 3rd Column bold-italic upper S Subscript f f comma 1 n Baseline left-parenthesis omega right-parenthesis 4th Column midline-horizontal-ellipsis 5th Column bold-italic upper S Subscript f f comma 1 upper N Baseline 2nd Row 1st Column vertical-ellipsis 2nd Column down-right-diagonal-ellipsis 3rd Column vertical-ellipsis 4th Column down-right-diagonal-ellipsis 5th Column vertical-ellipsis 3rd Row 1st Column bold-italic upper S Subscript f f comma m Baseline 1 Baseline left-parenthesis omega right-parenthesis 2nd Column midline-horizontal-ellipsis 3rd Column bold-italic upper S Subscript f f comma m n Baseline left-parenthesis omega right-parenthesis 4th Column midline-horizontal-ellipsis 5th Column bold-italic upper S Subscript f f comma m upper N Baseline 4th Row 1st Column vertical-ellipsis 2nd Column down-right-diagonal-ellipsis 3rd Column vertical-ellipsis 4th Column down-right-diagonal-ellipsis 5th Column vertical-ellipsis 5th Row 1st Column bold-italic upper S Subscript f f comma upper N Baseline 1 Baseline left-parenthesis omega right-parenthesis 2nd Column midline-horizontal-ellipsis 3rd Column bold-italic upper S Subscript f f comma upper N n Baseline left-parenthesis omega right-parenthesis 4th Column midline-horizontal-ellipsis 5th Column bold-italic upper S Subscript f f comma upper N upper N EndMatrix (1.201)

      This is a hermitian matrix due to the symmetry relationship of cross spectra also following from the expected value of each spectral product

       bold-italic upper S Subscript f f comma n m Baseline equals upper E left-bracket bold-italic upper F Subscript n Superscript asterisk Baseline left-parenthesis omega right-parenthesis bold-italic upper F Subscript m Baseline left-parenthesis omega right-parenthesis right-bracket equals upper E left-bracket bold-italic upper F Subscript n Baseline left-parenthesis omega right-parenthesis bold-italic upper F Subscript m Superscript asterisk Baseline left-parenthesis omega right-parenthesis right-bracket Superscript asterisk Baseline equals bold-italic upper S Subscript f f comma m n Superscript asterisk (1.202)

      For further considerations it is helpful to write the cross spectral matrix using the input spectra in vector form. Because of the matrix multiplication notation – row times column – the cross spectral density matrix can be written as

       Start 1 By 1 Matrix 1st Row bold-italic upper S Subscript f f Baseline EndMatrix equals upper E left-bracket Start 4 By 1 Matrix 1st 
              <a href=СКАЧАТЬ